
E·XFL

Intel - EPM7064AELI44-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	36
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7064aeli44-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Description

The MAX 7000A architecture includes the following elements:

- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices.

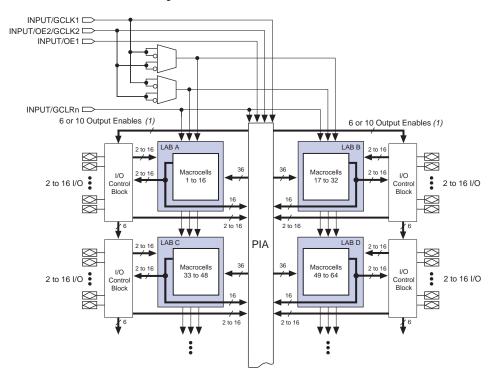
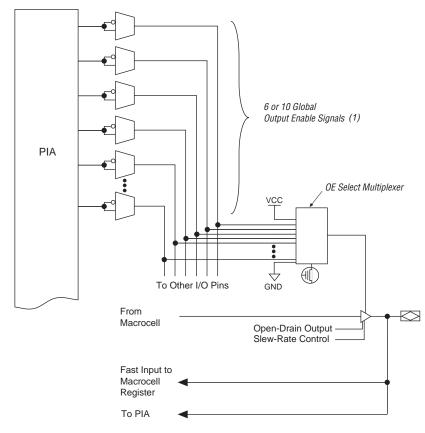


Figure 1. MAX 7000A Device Block Diagram

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables.


Logic Array Blocks

The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

Figure 6. I/O Control Block of MAX 7000A Devices

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

Table 8. MAX 7000A	JIAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation
IDCODE	Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is available for MAX 7000AE devices only
UESCODE	These instructions select the user electronic signature (UESCODE) and allow the UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A and EPM7256A devices only.
ISP Instructions	These instructions are used when programming MAX 7000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam STAPL File, JBC File, or SVF File via an embedded processor or test equipment.

Table 8. MAX 7000A JTAG Instructions

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

Table 9. MAX 7000A Boundary-So	Table 9. MAX 7000A Boundary-Scan Register Length								
Device	Boundary-Scan Register Length								
EPM7032AE	96								
EPM7064AE	192								
EPM7128A	288								
EPM7128AE	288								
EPM7256A	480								
EPM7256AE	480								
EPM7512AE	624								

Table 10. 32 [.]	Bit MAX 70	DODA Device IDCODE No	ote (1)	
Device		IDCODE (32 I	Bits)	
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1
EPM7128A	0000	0111 0001 0010 1000	00001101110	1
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1
EPM7256A	0000	0111 0010 0101 0110	00001101110	1
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)* for more information on JTAG BST.

Figure 8 shows timing information for the JTAG signals.

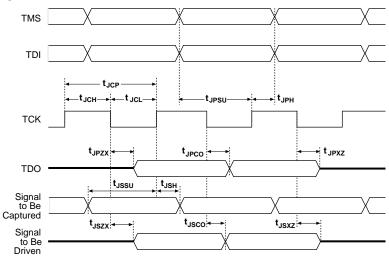


Figure 8. MAX 7000A JTAG Waveforms

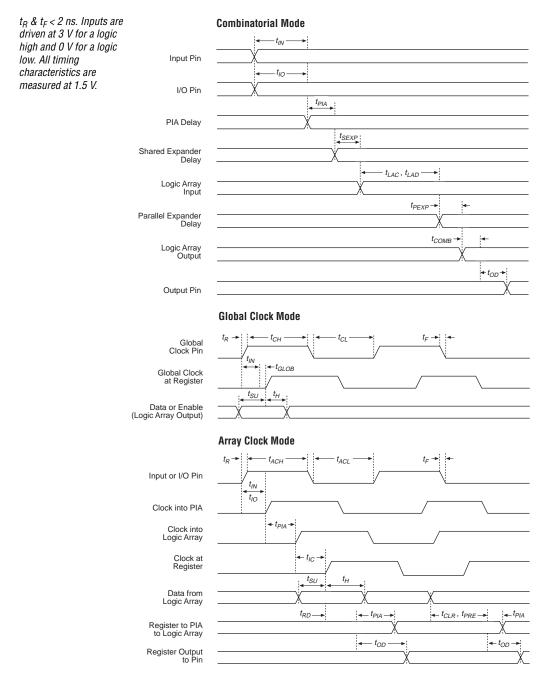

Table 11 shows the JTAG timing parameters and values for MAX 7000A devices.

Table 1	1. JTAG Timing Parameters & Values for MAX 70	IOOA De	vices Na	ote (1)
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Note:

(1) Timing parameters shown in this table apply for all specified VCCIO levels.

Figure 12. MAX 7000A Switching Waveforms

Table 20	D. EPM7064AE Internal Tim	ing Parameters	(Part 2 o	f 2)	Note (1)					
Symbol	Parameter	Conditions	Speed Grade							
			-	4	-	7	-10		1	
			Min	Max	Min	Max	Min	Max		
t _{EN}	Register enable time			0.6		1.0		1.2	ns	
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns	
t _{PRE}	Register preset time			1.3		2.1		2.9	ns	
t _{CLR}	Register clear time			1.3		2.1		2.9	ns	
t _{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns	
t _{LPA}	Low-power adder	(6)		3.5		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
fcnt	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{acnt}	Minimum array clock period	(2)		5.2		7.7		10.2	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

E

Symbol	Parameter	Conditions	Speed Grade							
			-	-5		-7		-10		
			Min	Max	Min	Max	Min	Max		
t _{EN}	Register enable time			0.7		1.0		1.3	ns	
t _{GLOB}	Global control delay			1.1		1.6		2.0	ns	
t _{PRE}	Register preset time			1.4		2.0		2.7	ns	
t _{CLR}	Register clear time			1.4		2.0		2.7	ns	
t _{PIA}	PIA delay	(2)		1.4		2.0		2.6	ns	
t _{LPA}	Low-power adder	(6)		4.0		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	7		10	-1	2	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz
t _{acnt}	Minimum array clock period	(2)		8.6		11.5		13.9	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz

E

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-7		-10		12	1
			Min	Max	Min	Max	Min	Max	
t _{IC}	Array clock delay			1.8		2.3		2.9	ns
t _{EN}	Register enable time			1.0		1.3		1.7	ns
t _{GLOB}	Global control delay			1.7		2.2		2.7	ns
t _{PRE}	Register preset time			1.0		1.4		1.7	ns
t _{CLR}	Register clear time			1.0		1.4		1.7	ns
t _{PIA}	PIA delay	(2)		3.0		4.0		4.8	ns
t _{LPA}	Low-power adder	(6)		4.5		5.0		5.0	ns

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	12	
			Min	Max	Min	Max	Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	4.2		5.3		7.0		8.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	4.6	1.0	6.1	1.0	7.3	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	1.9		2.4		3.1		3.8		ns
t _{AH}	Array clock hold time	(2)	1.5		2.2		3.3		4.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.0	1.0	7.5	1.0	10.0	1.0	12.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	144.9		116.3		87.0		72.5		MHz
t _{acnt}	Minimum array clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	144.9		116.3		87		72.5		MHz

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	12	
			Min	Max	Min	Max	Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	0.8		1.0		1.4		1.6		ns
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz

Symbol	Parameter	Conditions	Speed Grade						Unit		
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t _{FIN}	Fast input delay			2.4		3.0		3.4		3.8	ns
t _{SEXP}	Shared expander delay			2.8		3.5		4.7		5.6	ns
t _{PEXP}	Parallel expander delay			0.5		0.6		0.8		1.0	ns
t _{LAD}	Logic array delay			2.5		3.1		4.2		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.1		4.2		5.0	ns
t _{IOE}	Internal output enable delay			0.2		0.3		0.4		0.5	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.3		0.4		0.5		0.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		0.8		0.9		1.0		1.1	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		5.3		5.4		5.5		5.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		5.0	ns
t _{SU}	Register setup time		1.0		1.3		1.7		2.0		ns
t _H	Register hold time		1.7		2.4		3.7		4.7		ns
t _{FSU}	Register setup time of fast input		1.2		1.4		1.4		1.4		ns
t _{FH}	Register hold time of fast input		1.3		1.6		1.6		1.6		ns
t _{RD}	Register delay			1.6		2.0		2.7		3.2	ns

Altera Corporation

The parameters in this equation are:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned
		on, as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported in
		the Report File
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
		(typically 12.5%)
A, B, C	=	Constants, shown in Table 31

Table 31. MAX 7000A I _{CC} Equation Constants								
Device	A	В	C					
EPM7032AE	0.71	0.30	0.014					
EPM7064AE	0.71	0.30	0.014					
EPM7128A	0.71	0.30	0.014					
EPM7128AE	0.71	0.30	0.014					
EPM7256A	0.71	0.30	0.014					
EPM7256AE	0.71	0.30	0.014					
EPM7512AE	0.71	0.30	0.014					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 17. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

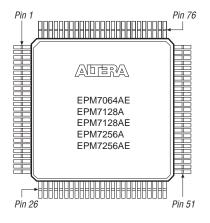
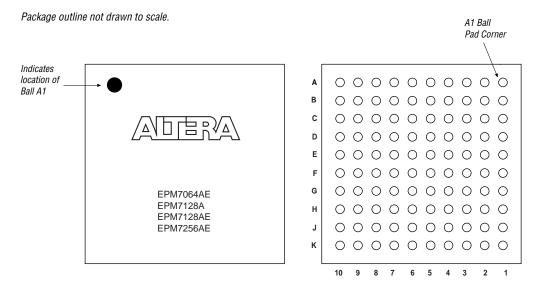



Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

Figure 21. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

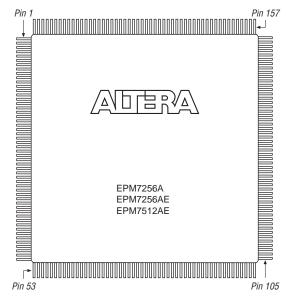
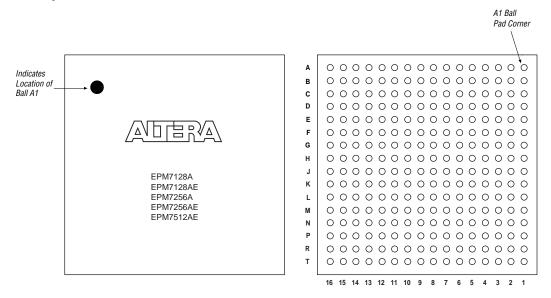



Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions.

Version 4.5

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5:

■ Updated text in the "Power Sequencing & Hot-Socketing" section.

Version 4.4

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.4:

- Added Tables 5 through 7.
 - Added "Programming Sequence" on page 17 and "Programming Times" on page 18.

Version 4.3

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.3:

- Added extended temperature devices to document
- Updated Table 14.

Version 4.2

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.2:

- Removed *Note* (1) from Table 2.
- Removed *Note* (4) from Tables 3 and 4.

Version 4.1

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.1:

- Updated leakage current information in Table 15.
- Updated Note (9) of Table 15.
- Updated *Note* (1) of Tables 17 through 30.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera valtera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. **Ex. EN ISO 9001**

101 111 100 000.

Altera Corporation