Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. #### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 4 | | Number of Macrocells | 64 | | Number of Gates | 1250 | | Number of I/O | 68 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-TQFP | | Supplier Device Package | 100-TQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7064aetc100-10 | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 1. MAX 700 | OA Device Featur | es | | | | |------------------------|------------------|-----------|-----------|-----------|-----------| | Feature | EPM7032AE | EPM7064AE | EPM7128AE | EPM7256AE | EPM7512AE | | Usable gates | 600 | 1,250 | 2,500 | 5,000 | 10,000 | | Macrocells | 32 | 64 | 128 | 256 | 512 | | Logic array blocks | 2 | 4 | 8 | 16 | 32 | | Maximum user I/O pins | 36 | 68 | 100 | 164 | 212 | | t _{PD} (ns) | 4.5 | 4.5 | 5.0 | 5.5 | 7.5 | | t _{SU} (ns) | 2.9 | 2.8 | 3.3 | 3.9 | 5.6 | | t _{FSU} (ns) | 2.5 | 2.5 | 2.5 | 2.5 | 3.0 | | t _{CO1} (ns) | 3.0 | 3.1 | 3.4 | 3.5 | 4.7 | | f _{CNT} (MHz) | 227.3 | 222.2 | 192.3 | 172.4 | 116.3 | ## ...and More Features - 4.5-ns pin-to-pin logic delays with counter frequencies of up to 227.3 MHz - MultiVoltTM I/O interface enables device core to run at 3.3 V, while I/O pins are compatible with 5.0-V, 3.3-V, and 2.5-V logic levels - Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), spacesaving FineLine BGA™, and plastic J-lead chip carrier (PLCC) packages - Supports hot-socketing in MAX 7000AE devices - Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance - PCI-compatible - Bus-friendly architecture, including programmable slew-rate control - Open-drain output option - Programmable macrocell registers with individual clear, preset, clock, and clock enable controls - Programmable power-up states for macrocell registers in MAX 7000AE devices - Programmable power-saving mode for 50% or greater power reduction in each macrocell - Configurable expander product-term distribution, allowing up to 32 product terms per macrocell - Programmable security bit for protection of proprietary designs - 6 to 10 pin- or logic-driven output enable signals - Two global clock signals with optional inversion - Enhanced interconnect resources for improved routability - Fast input setup times provided by a dedicated path from I/O pin to macrocell registers - Programmable output slew-rate control - Programmable ground pins # Functional Description The MAX 7000A architecture includes the following elements: - Logic array blocks (LABs) - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices. #### **Macrocells** MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell. Figure 2. MAX 7000A Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. Figure 5. MAX 7000A PIA Routing While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict. ## I/O Control Blocks The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{CC}.$ Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. ## In-System Programmability MAX 7000A devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000A architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 3.3-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k Ω . MAX 7000AE devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. This feature is only available in EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, and EPM7512AE devices. ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000A devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster serial/USB communications cable, ByteBlasterMV parallel port download cable, and BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem. In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a predefined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000AE devices can be programmed with either an adaptive or constant (non-adaptive) algorithm. EPM7128A and EPM7256A device can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices. The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD 71, can be used to program MAX 7000A devices with incircuit testers, PCs, or embedded processors. Figure 8 shows timing information for the JTAG signals. Table 11 shows the JTAG timing parameters and values for MAX 7000A devices. | Table 1 | 1. JTAG Timing Parameters & Values for MAX 70 | 000A De | vices No | ote (1) | |-------------------|--|---------|----------|---------| | Symbol | Parameter | Min | Max | Unit | | t _{JCP} | TCK clock period | 100 | | ns | | t _{JCH} | TCK clock high time | 50 | | ns | | t _{JCL} | TCK clock low time | 50 | | ns | | t _{JPSU} | JTAG port setup time | 20 | | ns | | t _{JPH} | JTAG port hold time | 45 | | ns | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | t _{JSSU} | Capture register setup time | 20 | | ns | | t _{JSH} | Capture register hold time | 45 | | ns | | t _{JSCO} | Update register clock to output | | 25 | ns | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | Note: ⁽¹⁾ Timing parameters shown in this table apply for all specified VCCIO levels. ## Programmable Speed/Power Control MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. ## Output Configuration MAX 7000A device outputs can be programmed to meet a variety of system-level requirements. ### MultiVolt I/O Interface The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a slightly greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals. Table 12 describes the MAX 7000A MultiVolt I/O support. | Table 12. MAX 70 | Table 12. MAX 7000A MultiVolt I/O Support | | | | | | | | | | |--|---|----------|----------|----------|----------|----------|--|--|--|--| | V _{CCIO} Voltage Input Signal (V) Output Signal (V) | | | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | | 2.5 | ✓ | ✓ | ✓ | ✓ | | | | | | | | 3.3 | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | | Table 1 | 4. MAX 7000A Device Recomm | ended Operating Conditions | | | | |--------------------|---|----------------------------|------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (13) | 3.0 | 3.6 | V | | V _{CCIO} | Supply voltage for output drivers, 3.3-V operation | (3) | 3.0 | 3.6 | V | | | Supply voltage for output drivers, 2.5-V operation | (3) | 2.3 | 2.7 | V | | V _{CCISP} | Supply voltage during in-
system programming | | 3.0 | 3.6 | V | | V _I | Input voltage | (4) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | Commercial range | 0 | 70 | ° C | | | | Industrial range (5) | -40 | 85 | ° C | | TJ | Junction temperature | Commercial range | 0 | 90 | ° C | | | | Industrial range (5) | -40 | 105 | ° C | | | | Extended range (5) | -40 | 130 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | _ | 40 | ns | Figure 11. MAX 7000A Timing Model The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters. See Application Note 94 (Understanding MAX 7000 Timing) for more information. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |------------------|----------------------|------------|-----|-------|-------|-------|-----|-----|------| | | | -4 -7 | | -7 -1 | | 10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IC} | Array clock delay | | | 1.2 | | 2.0 | | 2.5 | ns | | t _{EN} | Register enable time | | | 0.6 | | 1.0 | | 1.2 | ns | | t_{GLOB} | Global control delay | | | 0.8 | | 1.3 | | 1.9 | ns | | t _{PRE} | Register preset time | | | 1.2 | | 1.9 | | 2.6 | ns | | t _{CLR} | Register clear time | | | 1.2 | | 1.9 | | 2.6 | ns | | t_{PIA} | PIA delay | (2) | | 0.9 | | 1.5 | | 2.1 | ns | | t_{LPA} | Low-power adder | (6) | | 2.5 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 4 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.6 | | 1.1 | | 1.4 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.6 | | 1.1 | | 1.4 | ns | | t _{FIN} | Fast input delay | | | 2.5 | | 3.0 | | 3.7 | ns | | t _{SEXP} | Shared expander delay | | | 1.8 | | 3.0 | | 3.9 | ns | | t_{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.5 | | 2.5 | | 3.2 | ns | | t _{LAC} | Logic control array delay | | | 0.6 | | 1.0 | | 1.2 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.3 | | 1.8 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 1.3 | | 1.8 | | 2.3 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.3 | | 6.8 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on V _{CCIO} = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 1.3 | | 2.0 | | 2.9 | | ns | | t _H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Register hold time of fast input | | 1.5 | | 1.5 | | 1.5 | | ns | | t_{RD} | Register delay | | | 0.7 | | 1.2 | | 1.6 | ns | | t _{COMB} | Combinatorial delay | | | 0.6 | | 0.9 | | 1.3 | ns | | t _{IC} | Array clock delay | | | 1.2 | | 1.9 | | 2.5 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 5 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{FIN} | Fast input delay | | | 2.5 | | 3.0 | | 3.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t _{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 1.3 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay,
slow slew rate = on
V _{CCIO} = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.2 | | 1.6 | ns | | t _{COMB} | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | t_{IC} | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 5 | | 7 | - | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.7 | | 0.9 | | 1.2 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 0.9 | | 1.2 | ns | | t _{FIN} | Fast input delay | | | 2.4 | | 2.9 | | 3.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.1 | | 2.8 | | 3.7 | ns | | t _{PEXP} | Parallel expander delay | | | 0.3 | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 1.7 | | 2.2 | | 2.8 | ns | | t _{LAC} | Logic control array delay | | | 0.8 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 0.9 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 1.4 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on V_{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.9 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.5 | | 2.1 | | 2.9 | | ns | | t_H | Register hold time | | 0.7 | | 0.9 | | 1.2 | | ns | | t _{FSU} | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.9 | | 1.2 | | 1.6 | ns | | t_{COMB} | Combinatorial delay | | | 0.5 | | 0.8 | | 1.2 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 7 | | 10 | | 12 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{FIN} | Fast input delay | | | 3.1 | | 3.6 | | 4.1 | ns | | t _{SEXP} | Shared expander delay | | | 2.7 | | 3.5 | | 4.4 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 2.2 | | 2.8 | | 3.5 | ns | | t _{LAC} | Logic control array delay | | | 1.0 | | 1.3 | | 1.7 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.0 | | 1.5 | | 1.7 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 1.5 | | 2.0 | | 2.2 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$ | C1 = 35 pF | | 6.0 | | 6.5 | | 6.7 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 2.1 | | 3.0 | | 3.5 | | ns | | t _H | Register hold time | | 0.6 | | 8.0 | | 1.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.6 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 1.3 | | 1.7 | | 2.1 | ns | | t _{COMB} | Combinatorial delay | | | 0.6 | | 0.8 | | 1.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |------------------|----------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | -7 | | -10 | | 12 | 1 | | | | | Min | Max | Min | Max | Min | Max | 1 | | t _{IC} | Array clock delay | | | 1.8 | | 2.3 | | 2.9 | ns | | t _{EN} | Register enable time | | | 1.0 | | 1.3 | | 1.7 | ns | | t_{GLOB} | Global control delay | | | 1.7 | | 2.2 | | 2.7 | ns | | t _{PRE} | Register preset time | | | 1.0 | | 1.4 | | 1.7 | ns | | t _{CLR} | Register clear time | | | 1.0 | | 1.4 | | 1.7 | ns | | t_{PIA} | PIA delay | (2) | | 3.0 | | 4.0 | | 4.8 | ns | | t_{LPA} | Low-power adder | (6) | | 4.5 | | 5.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | |------------------|---|-------------------|-----|-----|-----|-------|-------|------|-----|------|------| | | | | - | 6 | - | 7 | -1 | 10 | -1 | 12 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.6 | | 0.7 | | 0.9 | | 1.1 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.6 | | 0.7 | | 0.9 | | 1.1 | ns | | t_{FIN} | Fast input delay | | | 2.7 | | 3.1 | | 3.6 | | 3.9 | ns | | t_{SEXP} | Shared expander delay | | | 2.5 | | 3.2 | | 4.3 | | 5.1 | ns | | t_{PEXP} | Parallel expander delay | | | 0.7 | | 0.8 | | 1.1 | | 1.3 | ns | | t_{LAD} | Logic array delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{LAC} | Logic control array delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.4 | | 0.6 | | 0.7 | | 0.9 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 0.9 | | 1.1 | | 1.2 | | 1.4 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.4 | | 5.6 | | 5.7 | | 5.9 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 1.9 | | 2.4 | | 3.1 | | 3.8 | | ns | | t _H | Register hold time | | 1.5 | | 2.2 | | 3.3 | | 4.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | 1.1 | | ns | | t _{FH} | Register hold time of fast input | | 1.7 | | 1.9 | | 1.9 | | 1.9 | | ns | | Table 29. EPM7256A External Timing Parameters Note (1) | | | | | | | | | | | | |--|--|-------------------|-------------|-----|-------|-----|------|------|------|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | Unit | | | | | -6 | | -7 | | -10 | | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.7 | | 4.6 | | 6.2 | | 7.4 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 4.2 | 1.0 | 5.5 | 1.0 | 6.6 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 8.0 | | 1.0 | | 1.4 | | 1.6 | | ns | | t _{AH} | Array clock hold time | (2) | 1.9 | | 2.7 | | 4.0 | | 5.1 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 6.2 | 1.0 | 7.8 | 1.0 | 10.3 | 1.0 | 12.4 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | Figure 13 shows the typical supply current versus frequency for MAX 7000A devices. Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2) #### EPM7128A & EPM7128AE Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram Package outlines not drawn to scale. Figure 16. 84-Pin PLCC Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 256-Pin BGA Package Pin-Out Diagram Package outline not drawn to scale.