

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

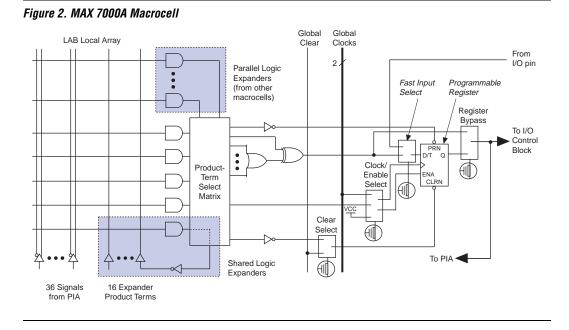
Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LBGA
Supplier Device Package	100-FBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7128aefc100-10n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

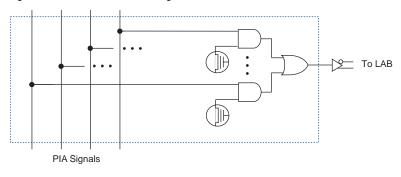

Table 1. MAX 700	OA Device Featur	es			
Feature	EPM7032AE	EPM7064AE	EPM7128AE	EPM7256AE	EPM7512AE
Usable gates	600	1,250	2,500	5,000	10,000
Macrocells	32	64	128	256	512
Logic array blocks	2	4	8	16	32
Maximum user I/O pins	36	68	100	164	212
t _{PD} (ns)	4.5	4.5	5.0	5.5	7.5
t _{SU} (ns)	2.9	2.8	3.3	3.9	5.6
t _{FSU} (ns)	2.5	2.5	2.5	2.5	3.0
t _{CO1} (ns)	3.0	3.1	3.4	3.5	4.7
f _{CNT} (MHz)	227.3	222.2	192.3	172.4	116.3

...and More Features

- 4.5-ns pin-to-pin logic delays with counter frequencies of up to 227.3 MHz
- MultiVolt[™] I/O interface enables device core to run at 3.3 V, while I/O pins are compatible with 5.0-V, 3.3-V, and 2.5-V logic levels
- Pin counts ranging from 44 to 256 in a variety of thin quad flat pack (TQFP), plastic quad flat pack (PQFP), ball-grid array (BGA), spacesaving FineLine BGA[™], and plastic J-lead chip carrier (PLCC) packages
- Supports hot-socketing in MAX 7000AE devices
- Programmable interconnect array (PIA) continuous routing structure for fast, predictable performance
- PCI-compatible
- Bus-friendly architecture, including programmable slew-rate control
- Open-drain output option
- Programmable macrocell registers with individual clear, preset, clock, and clock enable controls
- Programmable power-up states for macrocell registers in MAX 7000AE devices
- Programmable power-saving mode for 50% or greater power reduction in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- 6 to 10 pin- or logic-driven output enable signals
- Two global clock signals with optional inversion
- Enhanced interconnect resources for improved routability
- Fast input setup times provided by a dedicated path from I/O pin to macrocell registers
- Programmable output slew-rate control
- Programmable ground pins

Macrocells

MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell.


Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

Figure 5. MAX 7000A PIA Routing

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

In-System Programmability

MAX 7000A devices can be programmed in-system via an industrystandard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000A architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 3.3-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k Ω .

MAX 7000AE devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. This feature is only available in EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, and EPM7512AE devices.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000A devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster serial/USB communications cable, ByteBlasterMV parallel port download cable, and BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a predefined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000AE devices can be programmed with either an adaptive or constant (non-adaptive) algorithm. EPM7128A and EPM7256A device can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD 71, can be used to program MAX 7000A devices with incircuit testers, PCs, or embedded processors.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000A Device

The time required to program a single MAX 7000A device in-system can be calculated from the following formula:

$t_{PROG} = t_{PPU}$	$LSE + \frac{Cycle_{PTCK}}{f_{TCK}}$
where: t_{PROC} t_{PPUL}	
Cycle f _{TCK}	 PTCK = Number of TCK cycles to program a device TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula:

$t_{VER} = t_{VPULSE} + \frac{C_2}{2}$	^{jcle} VTCK ^f TCK
where: t_{VER} t_{VPULSE} $Cycle_{VTCK}$	= Verify time= Sum of the fixed times to verify the EEPROM cells= Number of TCK cycles to verify a device

Figure 8 shows timing information for the JTAG signals.

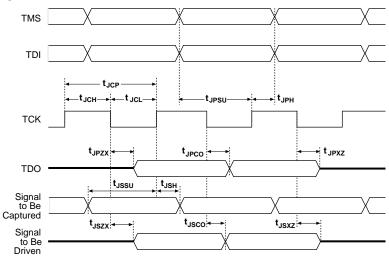
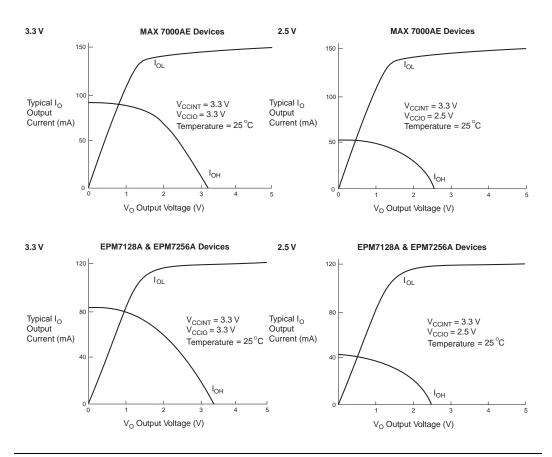


Figure 8. MAX 7000A JTAG Waveforms

Table 11 shows the JTAG timing parameters and values for MAX 7000A devices.

Table 1	1. JTAG Timing Parameters & Values for MAX 70	IOOA De	vices Na	ote (1)
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

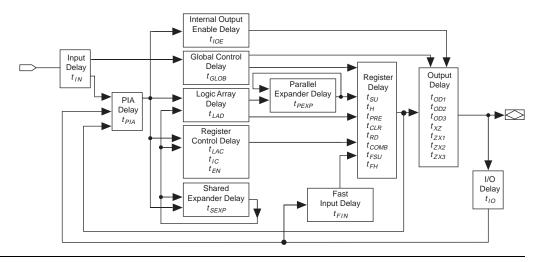

Note:

(1) Timing parameters shown in this table apply for all specified VCCIO levels.

Table 1	5. MAX 7000A Device DC Opera	ating Conditions Note (6)			
Symbol	Parameter	Conditions	Min	Max	Unit
VIH	High-level input voltage		1.7	5.75	V
V _{IL}	Low-level input voltage		-0.5	0.8	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	2.4		V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (7)	V _{CCIO} – 0.2		V
	2.5-V high-level output voltage	I _{OH} = -100 μA DC, V _{CCIO} = 2.30 V (7)	2.1		V
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7)	2.0		V
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7)	1.7		V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V (8)		0.45	V
	3.3-V low-level CMOS output voltage	I_{OL} = 0.1 mA DC, V_{CCIO} = 3.00 V (8)		0.2	V
	2.5-V low-level output voltage	I_{OL} = 100 µA DC, V_{CCIO} = 2.30 V (8)		0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8)		0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8)		0.7	V
I _I	Input leakage current	$V_{I} = -0.5$ to 5.5 V (9)	-10	10	μΑ
I _{OZ}	Tri-state output off-state current	$V_{I} = -0.5$ to 5.5 V (9)	-10	10	μΑ
R _{ISP}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 to 3.6 V (10)	20	50	kΩ
	during in-system programming	V _{CCIO} = 2.3 to 2.7 V (10)	30	80	kΩ
	or during power-up	V _{CCIO} = 2.3 to 3.6 V (11)	20	74	kΩ

Table 1	6. MAX 7000A Device Capacital	nce Note (12)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF

Figure 10 shows the typical output drive characteristics of MAX 7000A devices.



Timing Model

MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 11. MAX 7000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters.

See *Application Note 94 (Understanding MAX 7000 Timing)* for more information.

Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information.

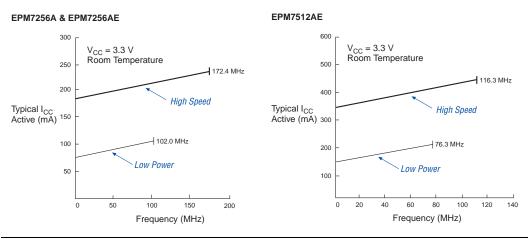
Table 1	7. EPM7032AE External Timi	ng Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade	Unit		
			-	4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4		-	7	-10		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{FIN}	Fast input delay			2.3		2.8		3.4	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t _{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Register hold time of fast input		1.5		1.5		1.5		ns
t _{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns

Symbol	Parameter	Conditions			Speed Grade						
			-;	-5		7	-10				
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns		
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns		
t _{SU}	Global clock setup time	(2)	3.9		5.2		6.9		ns		
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.5	1.0	4.8	1.0	6.4	ns		
t _{CH}	Global clock high time		2.0		3.0		4.0		ns		
t _{CL}	Global clock low time		2.0		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	2.0		2.7		3.6		ns		
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.5		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.4	1.0	7.3	1.0	9.7	ns		
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns		
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns		
t _{CNT}	Minimum global clock period	(2)		5.8		7.9		10.5	ns		
f _{CNT}	Maximum internal global clock frequency	(2), (4)	172.4		126.6		95.2		MHz		
t _{acnt}	Minimum array clock period	(2)		5.8		7.9		10.5	ns		
f _{acnt}	Maximum internal array clock frequency	(2), (4)	172.4		126.6		95.2		MHz		

Symbol	Parameter	Conditions			Speed	Grade	ade					Grade			
			-	-7		10	-12								
			Min	Max	Min	Max	Min	Max							
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns						
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns						
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns						
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns						
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns						
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns						
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns						
t _{CH}	Global clock high time		3.0		4.0		5.0		ns						
t _{CL}	Global clock low time		3.0		4.0		5.0		ns						
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns						
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns						
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns						
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns						
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns						
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns						
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns						
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz						
t _{acnt}	Minimum array clock period	(2)		8.6		11.5		13.9	ns						
f _{acnt}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz						

Symbol	Parameter	Conditions				Speed	Grade			Unit	
			-	-6		-7		-10		-12	
			Min	Max	Min	Max	Min	Мах	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	4.2		5.3		7.0		8.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	4.6	1.0	6.1	1.0	7.3	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	1.9		2.4		3.1		3.8		ns
t _{AH}	Array clock hold time	(2)	1.5		2.2		3.3		4.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.0	1.0	7.5	1.0	10.0	1.0	12.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	144.9		116.3		87.0		72.5		MHz
t _{acnt}	Minimum array clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	144.9		116.3		87		72.5		MHz


Symbol	Parameter	Conditions	Speed Grade						Unit		
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Мах	Min	Max	1
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	0.8		1.0		1.4		1.6		ns
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz

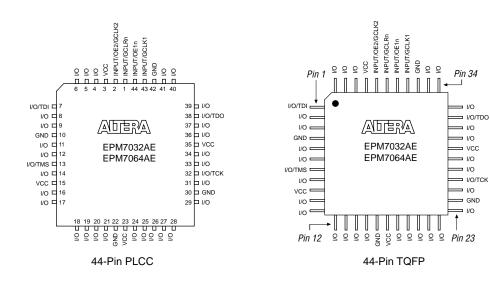
The parameters in this equation are:

MC _{TON}	=	Number of macrocells with the Turbo Bit option turned
		on, as reported in the MAX+PLUS II Report File (.rpt)
MC _{DEV}	=	Number of macrocells in the device
MC _{USED}	=	Total number of macrocells in the design, as reported in
		the Report File
f _{MAX}	=	Highest clock frequency to the device
tog _{LC}	=	Average percentage of logic cells toggling at each clock
		(typically 12.5%)
A, B, C	=	Constants, shown in Table 31

Table 31. MAX 7000A I _{CC} Equation Constants								
Device	A	В	C					
EPM7032AE	0.71	0.30	0.014					
EPM7064AE	0.71	0.30	0.014					
EPM7128A	0.71	0.30	0.014					
EPM7128AE	0.71	0.30	0.014					
EPM7256A	0.71	0.30	0.014					
EPM7256AE	0.71	0.30	0.014					
EPM7512AE	0.71	0.30	0.014					

This calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 2 of 2)


Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 14 through 23 show the package pin-out diagrams for MAX 7000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

Altera Corporation

Figure 17. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

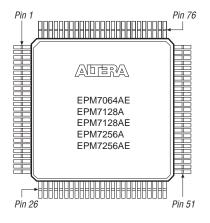
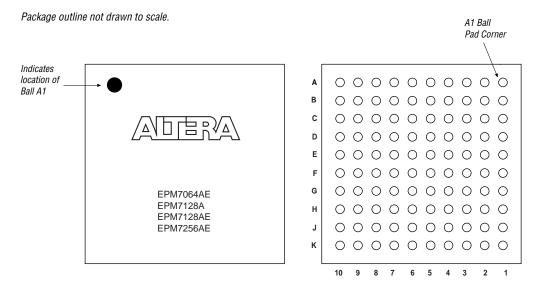
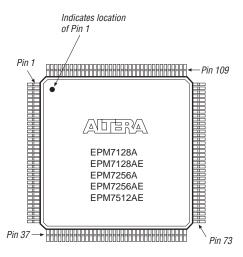
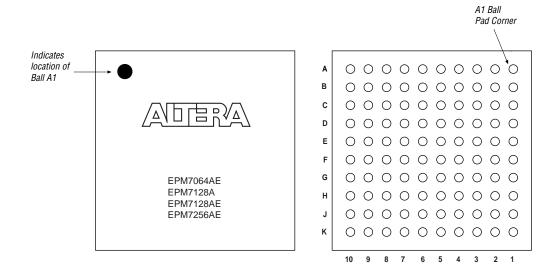
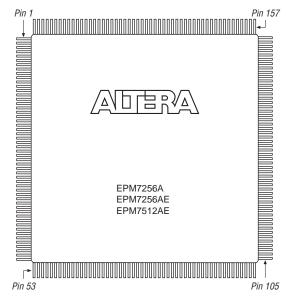



Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

Figure 19. 144-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.


Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 21. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

