Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 8 | | Number of Macrocells | 128 | | Number of Gates | 2500 | | Number of I/O | 100 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7128aetc144-10 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest - Programming support with Altera's Master Programming Unit (MPU), MasterBlaster™ serial/universal serial bus (USB) communications cable, ByteBlasterMV™ parallel port download cable, and BitBlaster™ serial download cable, as well as programming hardware from third-party manufacturers and any Jam™ STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester # General Description MAX 7000A (including MAX 7000AE) devices are high-density, high-performance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2. | Device | | Speed Grade | | | | | | | | | | |-----------|----------|-------------|----------|----------|----------|----------|--|--|--|--|--| | | -4 | -5 | -6 | -7 | -10 | -12 | | | | | | | EPM7032AE | ✓ | | | ✓ | ✓ | | | | | | | | EPM7064AE | ✓ | | | ✓ | ✓ | | | | | | | | EPM7128A | | | ✓ | ✓ | ✓ | ✓ | | | | | | | EPM7128AE | | ✓ | | ✓ | ✓ | | | | | | | | EPM7256A | | | ✓ | ✓ | ✓ | ✓ | | | | | | | EPM7256AE | | ✓ | | ✓ | ✓ | | | | | | | | EPM7512AE | | | | ✓ | ✓ | ✓ | | | | | | # Functional Description The MAX 7000A architecture includes the following elements: - Logic array blocks (LABs) - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices. ## **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. ## Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells. Shareable expanders can be shared by any or all macrocells in an LAB. Figure 3. MAX 7000A Shareable Expanders ## Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders, and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell. For more information on using the Jam STAPL language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor) and *Application Note 122* (Using Jam STAPL for ISP & ICR via an Embedded Processor). ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors. ## **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 7000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. | Table 8. MAX 7000A | JTAG Instructions | |--------------------|--| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is available for MAX 7000AE devices only | | UESCODE | These instructions select the user electronic signature (UESCODE) and allow the UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A and EPM7256A devices only. | | ISP Instructions | These instructions are used when programming MAX 7000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam STAPL File, JBC File, or SVF File via an embedded processor or test equipment. | The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices. | Table 9. MAX 7000A Boundary-So | can Register Length | |--------------------------------|-------------------------------| | Device | Boundary-Scan Register Length | | EPM7032AE | 96 | | EPM7064AE | 192 | | EPM7128A | 288 | | EPM7128AE | 288 | | EPM7256A | 480 | | EPM7256AE | 480 | | EPM7512AE | 624 | | Table 10. 32 | Table 10. 32-Bit MAX 7000A Device IDCODE Note (1) | | | | | | | | | | | |--------------|---|-----------------------|--------------------------------------|------------------|--|--|--|--|--|--|--| | Device | | IDCODE (32 E | Bits) | | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | | | | | | | | EPM7032AE | 0001 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | | | EPM7064AE | 0001 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | | | EPM7128A | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | EPM7128AE | 0001 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | | | EPM7256A | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | EPM7256AE | 0001 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | | | EPM7512AE | 0001 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST. # Power Sequencing & Hot-Socketing Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order. Signals can be driven into MAX 7000AE devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user. MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V_{CCINT} and V_{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant. EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up. ## **Design Security** All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. # **Generic Testing** MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow. Figure 10 shows the typical output drive characteristics of MAX 7000A devices. 3.3 V MAX 7000AE Devices 2.5 V MAX 7000AE Devices 150 150 100 100 V_{CCINT} = 3.3 V Typical I_O Typical I_O $V_{CCINT} = 3.3 V$ Output Output $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 \text{ V}$ Current (mA) Current (mA) Temperature = 25 °C Temperature = 25 °C 50 50 $I_{\cap H}$ 0 VO Output Voltage (V) Vo Output Voltage (V) EPM7128A & EPM7256A Devices 3.3 V 2.5 V EPM7128A & EPM7256A Devices 120 120 I_{OL} I_{OL} Typical I_O Output Temperature = 25°C Current (mA) V_{CCINT} = 3.3 V $V_{CCIO} = 3.3 V$ VO Output Voltage (V) Figure 10. Output Drive Characteristics of MAX 7000A Devices # **Timing Model** Typical I_O Current (mA) Output MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. 80 40 V_{CCINT} = 3.3 V $V_{CCIO} = 2.5 V$ I_{OH} Vo Output Voltage (V) Temperature = 25 °C | Table 20. EPM7064AE Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | | |---|----------------------|------------|-----|-----|------|-----|-----|-----|----|--| | Symbol | Parameter | Conditions | | | Unit | | | | | | | | | | - | -4 | | -7 | | 10 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EN} | Register enable time | | | 0.6 | | 1.0 | | 1.2 | ns | | | t _{GLOB} | Global control delay | | | 1.0 | | 1.5 | | 2.2 | ns | | | t _{PRE} | Register preset time | | | 1.3 | | 2.1 | | 2.9 | ns | | | t _{CLR} | Register clear time | | | 1.3 | | 2.1 | | 2.9 | ns | | | t_{PIA} | PIA delay | (2) | | 1.0 | | 1.7 | | 2.3 | ns | | | t _{LPA} | Low-power adder | (6) | | 3.5 | | 4.0 | | 5.0 | ns | | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------|--| | | | | - | 5 | | -7 | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | | t_{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | | t _{FIN} | Fast input delay | | | 2.5 | | 3.0 | | 3.4 | ns | | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | | t _{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 1.3 | | 1.7 | | 2.1 | ns | | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | | t _{ZX3} | Output buffer enable delay,
slow slew rate = on
V _{CCIO} = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | | t_{SU} | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | | t _{FSU} | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | | t _{RD} | Register delay | | | 8.0 | | 1.2 | | 1.6 | ns | | | t _{COMB} | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | | t _{IC} | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | |------------------|----------------------|------------|-------|-------------|-----|-----|-----|-----|----| | | | | -5 -7 | | 7 | - | 10 |] | | | | | | Min | Max | Min | Max | Min | Max | | | t _{EN} | Register enable time | | | 0.7 | | 1.0 | | 1.3 | ns | | t_{GLOB} | Global control delay | | | 1.1 | | 1.6 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 1.4 | | 2.0 | | 2.7 | ns | | t _{CLR} | Register clear time | | | 1.4 | | 2.0 | | 2.7 | ns | | t_{PIA} | PIA delay | (2) | | 1.4 | | 2.0 | | 2.6 | ns | | t_{LPA} | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|----------------------|------------|-----------|-----|-------|-------|-----|-----|------| | | | | -5 -7 -10 | | | | 10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t_{IC} | Array clock delay | | | 1.2 | | 1.6 | | 2.1 | ns | | t _{EN} | Register enable time | | | 0.8 | | 1.0 | | 1.3 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.5 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 1.6 | | 2.3 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 1.6 | | 2.3 | | 3.0 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.4 | | 3.2 | ns | | t_{LPA} | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | | |-------------------|----------------------|------------|-----|-------------|-----|------|-----|------|-----|------|----| | | | | - | -6 | | -7 | | 10 | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{RD} | Register delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{COMB} | Combinatorial delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{IC} | Array clock delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{EN} | Register enable time | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.2 | | 1.7 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{CLR} | Register clear time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{PIA} | PIA delay | (2) | | 0.9 | | 1.1 | | 1.5 | | 1.8 | ns | | t_{LPA} | Low-power adder | (6) | | 11.0 | | 10.0 | | 10.0 | | 10.0 | ns | | Table 2 | 9. EPM7256A External Tir | ning Parame | ters | Note | (1) | | | | | | | |-------------------|--|-------------------|-------|------|-------|-------|-------|------|------|------|------| | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | | | | | -(| -6 | | -7 | | -10 | | 12 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.7 | | 4.6 | | 6.2 | | 7.4 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 4.2 | 1.0 | 5.5 | 1.0 | 6.6 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 0.8 | | 1.0 | | 1.4 | | 1.6 | | ns | | t _{AH} | Array clock hold time | (2) | 1.9 | | 2.7 | | 4.0 | | 5.1 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 6.2 | 1.0 | 7.8 | 1.0 | 10.3 | 1.0 | 12.4 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | Figure 13 shows the typical supply current versus frequency for MAX 7000A devices. Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2) #### EPM7128A & EPM7128AE Figure 19. 144-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. Figure 22. 256-Pin BGA Package Pin-Out Diagram Package outline not drawn to scale. Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions. #### Version 4.5 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.5: Updated text in the "Power Sequencing & Hot-Socketing" section. ## Version 4.4 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.4: - Added Tables 5 through 7. - Added "Programming Sequence" on page 17 and "Programming Times" on page 18. #### Version 4.3 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3: - Added extended temperature devices to document - Updated Table 14. ### Version 4.2 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2: - Removed *Note* (1) from Table 2. - Removed *Note* (4) from Tables 3 and 4. #### Version 4.1 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1: - Updated leakage current information in Table 15. - Updated Note (9) of Table 15. - Updated *Note* (1) of Tables 17 through 30. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. L.S. EN ISO 9001