

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	84
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LBGA
Supplier Device Package	100-FBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256aefc100-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlasterTM serial/universal serial bus (USB) communications cable, ByteBlasterMVTM parallel port download cable, and BitBlasterTM serial download cable, as well as programming hardware from third-party manufacturers and any JamTM STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

General Description

MAX 7000A (including MAX 7000AE) devices are high-density, highperformance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROMbased MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2*. See Table 2.

Table 2. MAX 7	Table 2. MAX 7000A Speed Grades								
Device		Speed Grade							
	-4	-5	-6	-7	-10	-12			
EPM7032AE	>			\checkmark	\checkmark				
EPM7064AE	>			\checkmark	\checkmark				
EPM7128A			\checkmark	~	~	~			
EPM7128AE		~		\checkmark	\checkmark				
EPM7256A			\checkmark	\checkmark	\checkmark	\checkmark			
EPM7256AE		\checkmark		~	~				
EPM7512AE				\checkmark	\checkmark	\checkmark			

Functional Description

The MAX 7000A architecture includes the following elements:

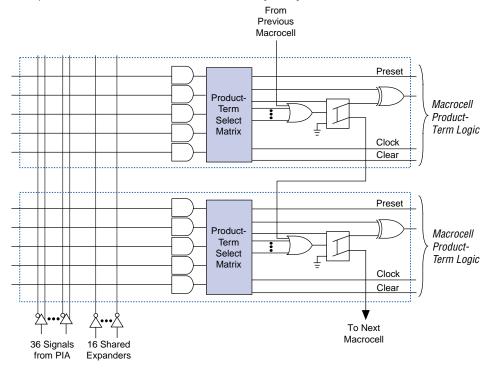
- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

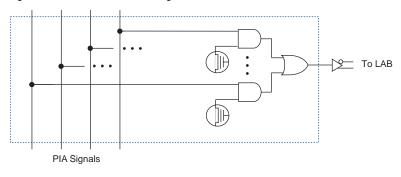
- Global clock signal. This mode achieves the fastest clock-to-output performance.
- Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.


Two global clock signals are available in MAX 7000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE device may be set to either a high or low state. This power-up state is specified at design entry. Upon power-up, each register in EPM7128A and EPM7256A devices are set to a low state.

All MAX 7000A I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast (as low as 2.5 ns) input setup time.

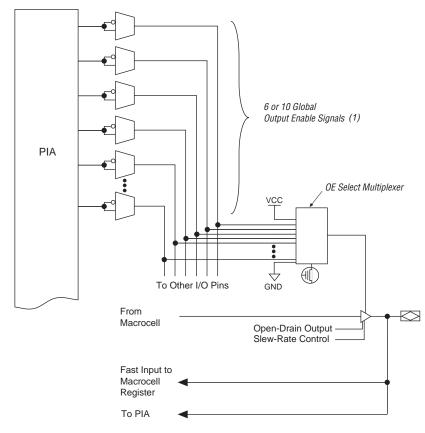
Figure 4. MAX 7000A Parallel Expanders



Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 5. MAX 7000A PIA Routing



While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Figure 6. I/O Control Block of MAX 7000A Devices

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

Device		f _{TCK}								
	10 MHz) MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz								
EPM7032AE	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	s	
EPM7064AE	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S	
EPM7128AE	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S	
EPM7256AE	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S	
EPM7512AE	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S	
EPM7128A <i>(1)</i>	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S	
EPM7256A (1)	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S	

Note to tables:

(1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

Programming with External Hardware

MAX 7000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the MPU, and the appropriate device adapter. The MPU performs continuity checks to ensure adequate electrical contact between the adapter and the device.

For more information, see the Altera Programming Hardware Data Sheet.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices.

For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) **Boundary-Scan** Support

MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A devices. The pin-out tables, available from the Altera web site (http://www.altera.com), show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

Table 9. MAX 7000A Boundary-Scan Register Length						
Device	Boundary-Scan Register Length					
EPM7032AE	96					
EPM7064AE	192					
EPM7128A	288					
EPM7128AE	288					
EPM7256A	480					
EPM7256AE	480					
EPM7512AE	624					

Table 10. 32 [.]	Table 10. 32-Bit MAX 7000A Device IDCODENote (1)							
Device		IDCODE (32 Bits)						
	Version (4 Bits)	(4 Bits) Identity (11 Bits)						
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1				
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1				
EPM7128A	0000	0111 0001 0010 1000	00001101110	1				
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1				
EPM7256A	0000	0111 0010 0101 0110	00001101110	1				
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1				
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1				

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)* for more information on JTAG BST.

Figure 8 shows timing information for the JTAG signals.

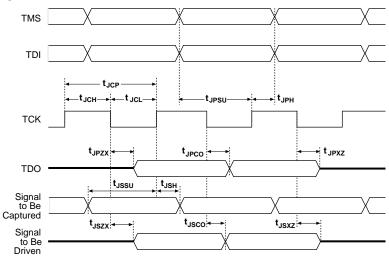


Figure 8. MAX 7000A JTAG Waveforms

Table 11 shows the JTAG timing parameters and values for MAX 7000A devices.

Table 1	1. JTAG Timing Parameters & Values for MAX 70	IOOA De	vices Na	ote (1)
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Note:

(1) Timing parameters shown in this table apply for all specified VCCIO levels.

Programmable Speed/Power Control

MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , \mathbf{t}_{ACL} , and $\mathbf{t_{CPPW}}$ parameters.

Output Configuration

MAX 7000A device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a slightly greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals.

Table 12 describes the MAX 7000A MultiVolt I/O support.

Table 12. MAX 7000A MultiVolt I/O Support								
V _{CCIO} Voltage Input Signal (V) Output Signal (V)								
	2.5	3.3	5.0	2.5	3.3	5.0		
2.5	\checkmark	\checkmark	\checkmark	\checkmark				
3.3	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		

Power Sequencing & Hot-Socketing	Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order.
	Signals can be driven into MAX 7000AE devices before and during power- up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user.
	MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V _{CCINT} and V _{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant.
	EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up.
Design Security	All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.
Generic Testing	MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow.

VCC

To Test

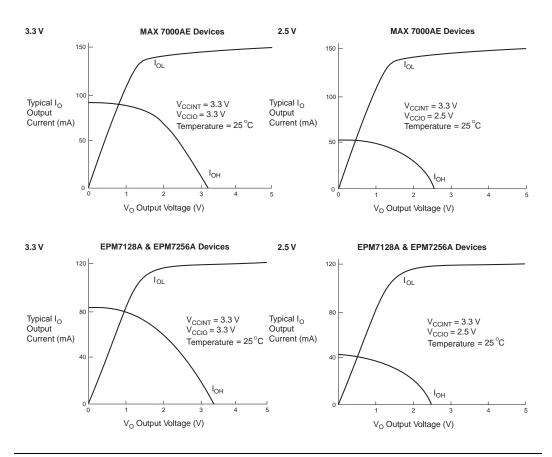
System

C1 (includes jig

Ŧ

capacitance)

Figure 9. MAX 7000A AC Test Conditions


Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests 703 Ω [521 Ω] *≶* must not be performed under AC conditions. Large-amplitude, fast-ground-Device Output current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between 586 Ω [481 Ω] *≥* the device ground pin and the test system ground, significant reductions in Device input observable noise immunity can result. rise and fall Numbers in brackets are for 2.5-V times < 2 ns outputs. Numbers without brackets are for 3.3-V outputs.

Operating Conditions

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices.

Table 1	Table 13. MAX 7000A Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V					
VI	DC input voltage		-2.0	5.75	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _A	Ambient temperature	Under bias	-65	135	°C					
Τ _J	Junction temperature	BGA, FineLine BGA, PQFP, and TQFP packages, under bias		135	°C					

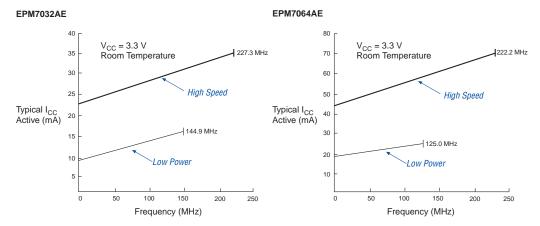
Figure 10 shows the typical output drive characteristics of MAX 7000A devices.

Timing Model

MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-4		7	-	10	
			Min	Max	Min	Max	Min	Max	1
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{FIN}	Fast input delay			2.3		2.8		3.4	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t _{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Register hold time of fast input		1.5		1.5		1.5		ns
t _{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns

г


Symbol	Parameter	Conditions		Speed Grade						
		-4 -7 -10		-4 -7		10				
			Min	Max	Min	Max	Min	Max		
t _{IC}	Array clock delay			1.2		2.0		2.5	ns	
t _{EN}	Register enable time			0.6		1.0		1.2	ns	
t _{GLOB}	Global control delay			0.8		1.3		1.9	ns	
t _{PRE}	Register preset time			1.2		1.9		2.6	ns	
t _{CLR}	Register clear time			1.2		1.9		2.6	ns	
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns	
t _{LPA}	Low-power adder	(6)		2.5		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-5		-		-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.9		5.2		6.9		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.5	1.0	4.8	1.0	6.4	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	2.0		2.7		3.6		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.4	1.0	7.3	1.0	9.7	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.8		7.9		10.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	172.4		126.6		95.2		MHz
t _{acnt}	Minimum array clock period	(2)		5.8		7.9		10.5	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	172.4		126.6		95.2		MHz

Symbol	Parameter	Conditions	Speed Grade								Unit
			-6		-7		-10		-12		-
			Min	Max	Min	Max	Min	Мах	Min	Max	1
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	4.2		5.3		7.0		8.5		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	4.6	1.0	6.1	1.0	7.3	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	1.9		2.4		3.1		3.8		ns
t _{AH}	Array clock hold time	(2)	1.5		2.2		3.3		4.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.0	1.0	7.5	1.0	10.0	1.0	12.0	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	144.9		116.3		87.0		72.5		MHz
t _{acnt}	Minimum array clock period	(2)		6.9		8.6		11.5		13.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	144.9		116.3		87		72.5		MHz

Figure 13 shows the typical supply current versus frequency for MAX 7000A devices.

EPM7128A & EPM7128AE

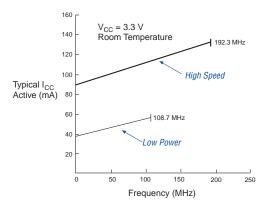


Figure 17. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

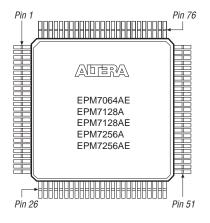


Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

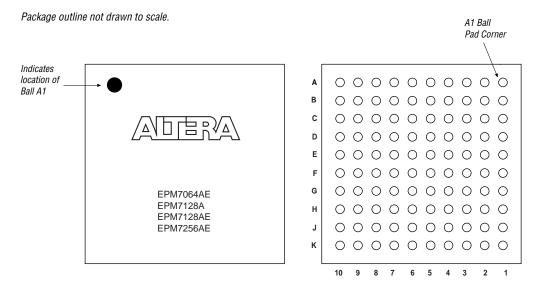
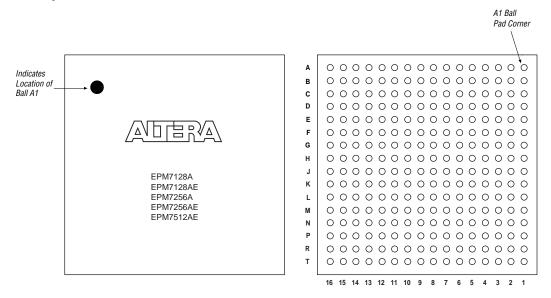



Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions.

Version 4.5

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5:

■ Updated text in the "Power Sequencing & Hot-Socketing" section.

Version 4.4

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.4:

- Added Tables 5 through 7.
 - Added "Programming Sequence" on page 17 and "Programming Times" on page 18.