Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. # **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 5.5 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 84 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LBGA | | Supplier Device Package | 100-FBGA (11x11) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256aefc100-5 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times. MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms, providing up to 32 product terms per macrocell. MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems. MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet. # Functional Description The MAX 7000A architecture includes the following elements: - Logic array blocks (LABs) - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices. Figure 1. MAX 7000A Device Block Diagram # Note: (1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables. # **Logic Array Blocks** The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells. Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times ### **Macrocells** MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell. Figure 2. MAX 7000A Macrocell Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design. # Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders, and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell. | Table 8. MAX 7000A | JTAG Instructions | |--------------------|--| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is available for MAX 7000AE devices only | | UESCODE | These instructions select the user electronic signature (UESCODE) and allow the UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A and EPM7256A devices only. | | ISP Instructions | These instructions are used when programming MAX 7000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam STAPL File, JBC File, or SVF File via an embedded processor or test equipment. | # Power Sequencing & Hot-Socketing Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order. Signals can be driven into MAX 7000AE devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user. MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V_{CCINT} and V_{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant. EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up. # **Design Security** All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed. # **Generic Testing** MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow. | Table 1 | 4. MAX 7000A Device Recomm | ended Operating Conditions | | | | |--------------------|---|----------------------------|-------------------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (13) | 3.0 | 3.6 | V | | V _{CCIO} | Supply voltage for output drivers, 3.3-V operation | (3) | 3.0 3.6
2.3 2.7
3.0 3.6 | V | | | | Supply voltage for output drivers, 2.5-V operation | (3) | 2.3 | 2.7 | V | | V _{CCISP} | Supply voltage during in-
system programming | | 3.0 | 3.6 | V | | V _I | Input voltage | (4) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | Commercial range | 0 | 70 | ° C | | | | Industrial range (5) | -40 | 85 | ° C | | TJ | Junction temperature | Commercial range | 0 | 90 | ° C | | | | Industrial range (5) | -40 | 105 | ° C | | | | Extended range (5) | -40 | 130 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------------|--|-------------------------|------|------| | V _{IH} | High-level input voltage | | 1.7 | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | 0.8 | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} – 0.2 | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V$ (7) | 2.1 | | V | | | | I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7) | 2.0 | | V | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V}$ (7) | 1.7 | | V | | V _{OL} | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.2 | V | | | 2.5-V low-level output voltage | $I_{OL} = 100 \mu\text{A} DC, V_{CCIO} = 2.30 V (8)$ | | 0.2 | V | | | | I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8) | | 0.4 | V | | | | I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8) | | 0.7 | V | | կ | Input leakage current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (9)$ | -10 | 10 | μΑ | | I _{OZ} | Tri-state output off-state current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (9)$ | -10 | 10 | μΑ | | R _{ISP} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 to 3.6 V (10) | 20 | 50 | kΩ | | | during in-system programming | V _{CCIO} = 2.3 to 2.7 V (10) | 30 | 80 | kΩ | | | or during power-up | V _{CCIO} = 2.3 to 3.6 V (11) | 20 | 74 | kΩ | | Table 1 | Table 16. MAX 7000A Device CapacitanceNote (12) | | | | | | | | | | |------------------|---|-------------------------------------|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | | ### MAX 7000A Programmable Logic Device Data Sheet #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically. - (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. - (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28. - (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current. - (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is ±300 μA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified. - (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system. - (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up. - (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF. - (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. Figure 10 shows the typical output drive characteristics of MAX 7000A devices. 3.3 V MAX 7000AE Devices 2.5 V MAX 7000AE Devices 150 150 100 100 V_{CCINT} = 3.3 V Typical I_O Typical I_O $V_{CCINT} = 3.3 V$ Output Output $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 \text{ V}$ Current (mA) Current (mA) Temperature = 25 °C Temperature = 25 °C 50 50 $I_{\cap H}$ 0 VO Output Voltage (V) Vo Output Voltage (V) EPM7128A & EPM7256A Devices 3.3 V 2.5 V EPM7128A & EPM7256A Devices 120 120 I_{OL} I_{OL} Typical I_O Output Temperature = 25°C Current (mA) V_{CCINT} = 3.3 V $V_{CCIO} = 3.3 V$ V_O Output Voltage (V) Figure 10. Output Drive Characteristics of MAX 7000A Devices # **Timing Model** Typical I_O Current (mA) Output MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. 80 40 V_{CCINT} = 3.3 V $V_{CCIO} = 2.5 V$ I_{OH} Vo Output Voltage (V) Temperature = 25 °C # Figure 12. MAX 7000A Switching Waveforms t_R & t_F < 2 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V. Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|--|----------------|-------------|-----|-------|-----|-------|-----|-----| | | | | -4 | | -7 | | -10 | | | | | | | Min | Max | Min | Max | Min | Max | - | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{SU} | Global clock setup time | (2) | 2.9 | | 4.7 | | 6.3 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.5 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.5 | | 0.5 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.4 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | |-------------------|---|-------------------|-------------|-----|-----|-----|-----|------|----| | | | | - | -4 | | ·7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.2 | | 1.5 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.2 | | 1.5 | ns | | t _{FIN} | Fast input delay | | | 2.3 | | 2.8 | | 3.4 | ns | | t _{SEXP} | Shared expander delay | | | 1.9 | | 3.1 | | 4.0 | ns | | t _{PEXP} | Parallel expander delay | | | 0.5 | | 0.8 | | 1.0 | ns | | t_{LAD} | Logic array delay | | | 1.5 | | 2.5 | | 3.3 | ns | | t _{LAC} | Logic control array delay | | | 0.6 | | 1.0 | | 1.2 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.3 | | 1.8 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 1.3 | | 1.8 | | 2.3 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$ | C1 = 35 pF | | 5.8 | | 6.3 | | 6.8 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.3 | | 2.0 | | 2.8 | | ns | | t _H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 1.0 | | 1.5 | | 1.5 | | ns | | t _{FH} | Register hold time of fast input | | 1.5 | | 1.5 | | 1.5 | | ns | | t _{RD} | Register delay | | | 0.7 | | 1.2 | | 1.5 | ns | | t _{COMB} | Combinatorial delay | | | 0.6 | | 1.0 | | 1.3 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | |------------------|----------------------|------------|-----|-----|-------|-------|--------|-----|------|--| | | | | - | -4 | -4 -7 | | -7 -10 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{IC} | Array clock delay | | | 1.2 | | 2.0 | | 2.5 | ns | | | t _{EN} | Register enable time | | | 0.6 | | 1.0 | | 1.2 | ns | | | t_{GLOB} | Global control delay | | | 0.8 | | 1.3 | | 1.9 | ns | | | t _{PRE} | Register preset time | | | 1.2 | | 1.9 | | 2.6 | ns | | | t _{CLR} | Register clear time | | | 1.2 | | 1.9 | | 2.6 | ns | | | t_{PIA} | PIA delay | (2) | | 0.9 | | 1.5 | | 2.1 | ns | | | t_{LPA} | Low-power adder | (6) | | 2.5 | | 4.0 | | 5.0 | ns | | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | |-------------------|--|-------------------|-------------|-----|-------|-----|------|------|-----|--| | | | | -: | 5 | - | 7 | -1 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 5.0 | | 7.5 | | 10 | ns | | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 5.0 | | 7.5 | | 10 | ns | | | t _{SU} | Global clock setup time | (2) | 3.3 | | 4.9 | | 6.6 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.4 | 1.0 | 5.0 | 1.0 | 6.6 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 1.8 | | 2.8 | | 3.8 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.4 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 4.9 | 1.0 | 7.1 | 1.0 | 9.4 | ns | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 5.2 | | 7.7 | | 10.2 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 192.3 | | 129.9 | | 98.0 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 5.2 | | 7.7 | | 10.2 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 192.3 | | 129.9 | | 98.0 | | MHz | | | Symbol | Parameter | Conditions | | Speed Grade | | | | | | | |-------------------|--|-------------------|-------|-------------|-------|-----|------|------|-----|--| | | | ļ | -! | 5 | - | 7 | -10 | | 1 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 5.5 | | 7.5 | | 10 | ns | | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 5.5 | | 7.5 | | 10 | ns | | | t _{SU} | Global clock setup time | (2) | 3.9 | | 5.2 | | 6.9 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.5 | 1.0 | 4.8 | 1.0 | 6.4 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 2.0 | | 2.7 | | 3.6 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.5 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 5.4 | 1.0 | 7.3 | 1.0 | 9.7 | ns | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 5.8 | | 7.9 | | 10.5 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 172.4 | | 126.6 | | 95.2 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 5.8 | | 7.9 | | 10.5 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 172.4 | | 126.6 | | 95.2 | | MHz | | Figure 21. 208-Pin PQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. # Revision History The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions. ### Version 4.5 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.5: Updated text in the "Power Sequencing & Hot-Socketing" section. # Version 4.4 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.4: - Added Tables 5 through 7. - Added "Programming Sequence" on page 17 and "Programming Times" on page 18. ### Version 4.3 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3: - Added extended temperature devices to document - Updated Table 14. ## Version 4.2 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2: - Removed *Note* (1) from Table 2. - Removed *Note* (4) from Tables 3 and 4. ### Version 4.1 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1: - Updated leakage current information in Table 15. - Updated Note (9) of Table 15. - Updated *Note* (1) of Tables 17 through 30. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. L.S. EN ISO 9001