
# E·XFL

# Intel - EPM7256AEFC256-10N Datasheet



Welcome to E-XFL.COM

### Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

**Applications of Embedded - CPLDs** 

# Details

| Details                         |                                                               |
|---------------------------------|---------------------------------------------------------------|
| Product Status                  | Obsolete                                                      |
| Programmable Type               | In System Programmable                                        |
| Delay Time tpd(1) Max           | 10 ns                                                         |
| Voltage Supply - Internal       | 3V ~ 3.6V                                                     |
| Number of Logic Elements/Blocks | 16                                                            |
| Number of Macrocells            | 256                                                           |
| Number of Gates                 | 5000                                                          |
| Number of I/O                   | 164                                                           |
| Operating Temperature           | 0°C ~ 70°C (TA)                                               |
| Mounting Type                   | Surface Mount                                                 |
| Package / Case                  | 256-BGA                                                       |
| Supplier Device Package         | 256-FBGA (17x17)                                              |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm7256aefc256-10n |
|                                 |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlaster<sup>TM</sup> serial/universal serial bus (USB) communications cable, ByteBlasterMV<sup>TM</sup> parallel port download cable, and BitBlaster<sup>TM</sup> serial download cable, as well as programming hardware from third-party manufacturers and any Jam<sup>TM</sup> STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

# General Description

MAX 7000A (including MAX 7000AE) devices are high-density, highperformance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROMbased MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2*. See Table 2.

| Table 2. MAX 7 | 000A Spe    | ed Grades |              |              |              |              |
|----------------|-------------|-----------|--------------|--------------|--------------|--------------|
| Device         |             |           | Speed        | Grade        |              |              |
|                | -4          | -5        | -6           | -7           | -10          | -12          |
| EPM7032AE      | <b>&gt;</b> |           |              | $\checkmark$ | $\checkmark$ |              |
| EPM7064AE      | <b>&gt;</b> |           |              | $\checkmark$ | $\checkmark$ |              |
| EPM7128A       |             |           | $\checkmark$ | ~            | ~            | ~            |
| EPM7128AE      |             | ~         |              | $\checkmark$ | $\checkmark$ |              |
| EPM7256A       |             |           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| EPM7256AE      |             | ~         |              | ~            | ~            |              |
| EPM7512AE      |             |           |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |

MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and highspeed parallel expander product terms, providing up to 32 product terms per macrocell.

MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems.

MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

•••

For more information on development tools, see the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet* and the *Quartus Programmable Logic Development System & Software Data Sheet*.

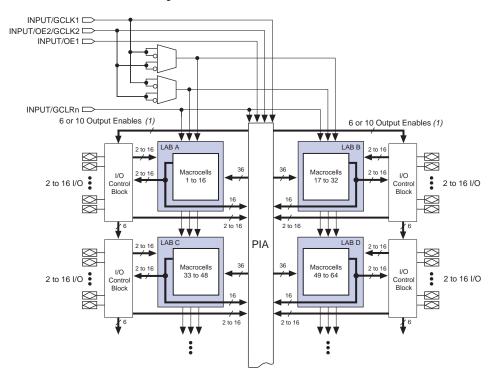



Figure 1. MAX 7000A Device Block Diagram

#### Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables.

### Logic Array Blocks

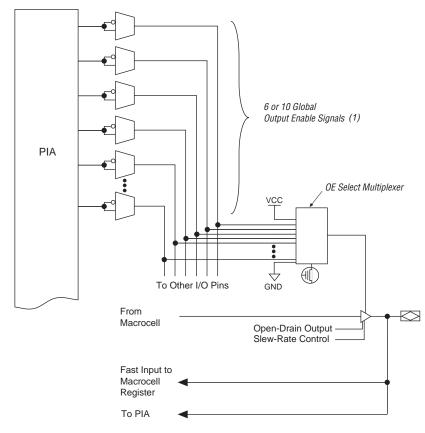
The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:


- Global clock signal. This mode achieves the fastest clock-to-output performance.
- Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 7000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE device may be set to either a high or low state. This power-up state is specified at design entry. Upon power-up, each register in EPM7128A and EPM7256A devices are set to a low state.

All MAX 7000A I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast (as low as 2.5 ns) input setup time.

Figure 6. I/O Control Block of MAX 7000A Devices



#### Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to  $V_{CC}$ , the output is enabled.

The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

Figure 8 shows timing information for the JTAG signals.

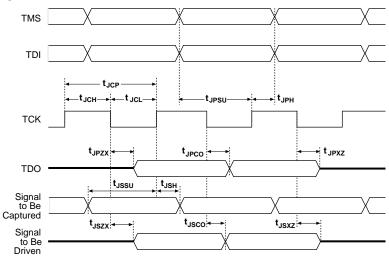



Figure 8. MAX 7000A JTAG Waveforms

Table 11 shows the JTAG timing parameters and values for MAX 7000A devices.

| Table 1           | 1. JTAG Timing Parameters & Values for MAX 70  | IOOA De | vices Na | ote (1) |
|-------------------|------------------------------------------------|---------|----------|---------|
| Symbol            | Parameter                                      | Min     | Max      | Unit    |
| t <sub>JCP</sub>  | TCK clock period                               | 100     |          | ns      |
| t <sub>JCH</sub>  | TCK clock high time                            | 50      |          | ns      |
| t <sub>JCL</sub>  | TCK clock low time                             | 50      |          | ns      |
| t <sub>JPSU</sub> | JTAG port setup time                           | 20      |          | ns      |
| t <sub>JPH</sub>  | JTAG port hold time                            | 45      |          | ns      |
| t <sub>JPCO</sub> | JTAG port clock to output                      |         | 25       | ns      |
| t <sub>JPZX</sub> | JTAG port high impedance to valid output       |         | 25       | ns      |
| t <sub>JPXZ</sub> | JTAG port valid output to high impedance       |         | 25       | ns      |
| t <sub>JSSU</sub> | Capture register setup time                    | 20      |          | ns      |
| t <sub>JSH</sub>  | Capture register hold time                     | 45      |          | ns      |
| t <sub>JSCO</sub> | Update register clock to output                |         | 25       | ns      |
| t <sub>JSZX</sub> | Update register high impedance to valid output |         | 25       | ns      |
| t <sub>JSXZ</sub> | Update register valid output to high impedance |         | 25       | ns      |

Note:

(1) Timing parameters shown in this table apply for all specified VCCIO levels.

# **Open-Drain Output Option**

MAX 7000A devices provide an optional open-drain (equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. This output can also provide an additional wired-OR plane.

Open-drain output pins on MAX 7000A devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high  $V_{IH}$ . When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V to meet CMOS  $V_{OH}$  requirements. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The  $I_{OL}$  current specification should be considered when selecting a pull-up resistor.

# **Programmable Ground Pins**

Each unused I/O pin on MAX 7000A devices may be used as an additional ground pin. In EPM7128A and EPM7256A devices, utilizing unused I/O pins as additional ground pins requires using the associated macrocell. In MAX 7000AE devices, this programmable ground feature does not require the use of the associated macrocell; therefore, the buried macrocell is still available for user logic.

# Slew-Rate Control

The output buffer for each MAX 7000A I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

VCC

To Test

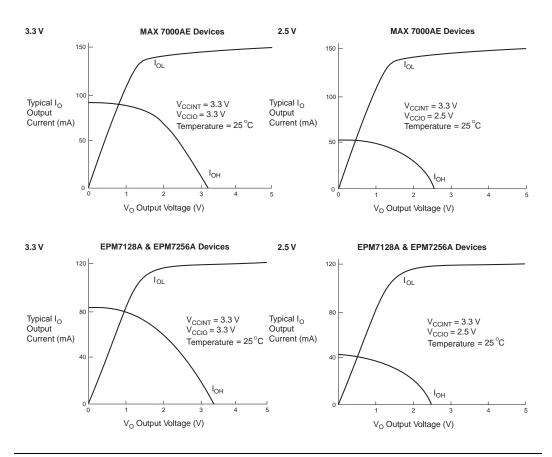
System

C1 (includes jig

Ŧ

capacitance)

#### Figure 9. MAX 7000A AC Test Conditions

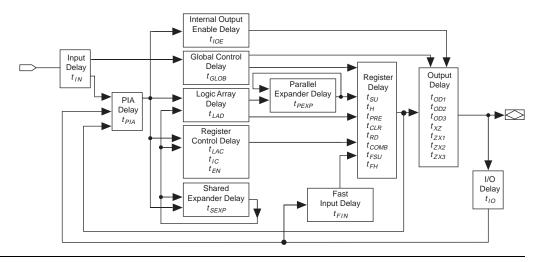

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests 703 Ω [521 Ω] *≶* must not be performed under AC conditions. Large-amplitude, fast-ground-Device Output current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between 586 Ω [481 Ω] *≥* the device ground pin and the test system ground, significant reductions in Device input observable noise immunity can result. rise and fall Numbers in brackets are for 2.5-V times < 2 ns outputs. Numbers without brackets are for 3.3-V outputs.

# Operating Conditions

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices.

| Table 1          | 3. MAX 7000A Device Absolu | te Maximum Ratings Note (1)                            |      |      |      |
|------------------|----------------------------|--------------------------------------------------------|------|------|------|
| Symbol           | Parameter                  | Conditions                                             | Min  | Max  | Unit |
| V <sub>CC</sub>  | Supply voltage             | With respect to ground (2)                             | -0.5 | 4.6  | V    |
| VI               | DC input voltage           |                                                        | -2.0 | 5.75 | V    |
| I <sub>OUT</sub> | DC output current, per pin |                                                        | -25  | 25   | mA   |
| T <sub>STG</sub> | Storage temperature        | No bias                                                | -65  | 150  | °C   |
| T <sub>A</sub>   | Ambient temperature        | Under bias                                             | -65  | 135  | °C   |
| Τ <sub>J</sub>   | Junction temperature       | BGA, FineLine BGA, PQFP, and TQFP packages, under bias |      | 135  | °C   |

Figure 10 shows the typical output drive characteristics of MAX 7000A devices.






# **Timing Model**

MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

Figure 11. MAX 7000A Timing Model



The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters.



See *Application Note 94 (Understanding MAX 7000 Timing)* for more information.

| Symbol            | Parameter                                                                             | Conditions        |     |     | Speed | Grade |     |      | Unit |
|-------------------|---------------------------------------------------------------------------------------|-------------------|-----|-----|-------|-------|-----|------|------|
|                   |                                                                                       |                   | -   | 5   | -     | 7     |     | 10   |      |
|                   |                                                                                       |                   | Min | Max | Min   | Max   | Min | Max  |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                            |                   |     | 0.7 |       | 1.0   |     | 1.4  | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                        |                   |     | 0.7 |       | 1.0   |     | 1.4  | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                      |                   |     | 2.5 |       | 3.0   |     | 3.4  | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                 |                   |     | 2.0 |       | 2.9   |     | 3.8  | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                               |                   |     | 0.4 |       | 0.7   |     | 0.9  | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                     |                   |     | 1.6 |       | 2.4   |     | 3.1  | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                             |                   |     | 0.7 |       | 1.0   |     | 1.3  | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                          |                   |     | 0.0 |       | 0.0   |     | 0.0  | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$                  | C1 = 35 pF        |     | 0.8 |       | 1.2   |     | 1.6  | ns   |
| t <sub>OD2</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$                  | C1 = 35 pF<br>(5) |     | 1.3 |       | 1.7   |     | 2.1  | ns   |
| t <sub>OD3</sub>  | Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$ | C1 = 35 pF        |     | 5.8 |       | 6.2   |     | 6.6  | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 3.3 V$             | C1 = 35 pF        |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 2.5 V$             | C1 = 35 pF<br>(5) |     | 4.5 |       | 4.5   |     | 5.5  | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay,<br>slow slew rate = on<br>$V_{CCIO} = 3.3 V$              | C1 = 35 pF        |     | 9.0 |       | 9.0   |     | 10.0 | ns   |
| t <sub>XZ</sub>   | Output buffer disable delay                                                           | C1 = 5 pF         |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>SU</sub>   | Register setup time                                                                   |                   | 1.4 |     | 2.1   |       | 2.9 |      | ns   |
| t <sub>H</sub>    | Register hold time                                                                    |                   | 0.6 |     | 1.0   |       | 1.3 |      | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                     |                   | 1.1 |     | 1.6   |       | 1.6 |      | ns   |
| t <sub>FH</sub>   | Register hold time of fast input                                                      |                   | 1.4 |     | 1.4   |       | 1.4 |      | ns   |
| t <sub>RD</sub>   | Register delay                                                                        |                   |     | 0.8 |       | 1.2   |     | 1.6  | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                                   |                   |     | 0.5 |       | 0.9   |     | 1.3  | ns   |
| t <sub>IC</sub>   | Array clock delay                                                                     |                   |     | 1.2 |       | 1.7   |     | 2.2  | ns   |

Altera Corporation

E

| Table 22          | 2. EPM7128AE Internal Ti | ming Parameters | (Part 2 o   | f 2) | Note (1) |     |     |     |        |  |    |  |
|-------------------|--------------------------|-----------------|-------------|------|----------|-----|-----|-----|--------|--|----|--|
| Symbol            | Parameter                | Conditions      | Speed Grade |      |          |     |     |     |        |  |    |  |
|                   |                          |                 | -5 -7 -10   |      | -5 -7    |     |     |     | -7 -10 |  | 10 |  |
|                   |                          |                 | Min         | Max  | Min      | Max | Min | Max |        |  |    |  |
| t <sub>EN</sub>   | Register enable time     |                 |             | 0.7  |          | 1.0 |     | 1.3 | ns     |  |    |  |
| t <sub>GLOB</sub> | Global control delay     |                 |             | 1.1  |          | 1.6 |     | 2.0 | ns     |  |    |  |
| t <sub>PRE</sub>  | Register preset time     |                 |             | 1.4  |          | 2.0 |     | 2.7 | ns     |  |    |  |
| t <sub>CLR</sub>  | Register clear time      |                 |             | 1.4  |          | 2.0 |     | 2.7 | ns     |  |    |  |
| t <sub>PIA</sub>  | PIA delay                | (2)             |             | 1.4  |          | 2.0 |     | 2.6 | ns     |  |    |  |
| t <sub>LPA</sub>  | Low-power adder          | (6)             |             | 4.0  |          | 4.0 |     | 5.0 | ns     |  |    |  |

| Symbol            | Parameter                                | Conditions        |       |     | Speed | Grade |      |      | Unit |
|-------------------|------------------------------------------|-------------------|-------|-----|-------|-------|------|------|------|
|                   |                                          |                   | -;    | 5   | -     | 7     | -1   | 0    |      |
|                   |                                          |                   | Min   | Max | Min   | Max   | Min  | Max  |      |
| t <sub>PD1</sub>  | Input to non-<br>registered output       | C1 = 35 pF<br>(2) |       | 5.5 |       | 7.5   |      | 10   | ns   |
| t <sub>PD2</sub>  | I/O input to non-<br>registered output   | C1 = 35 pF<br>(2) |       | 5.5 |       | 7.5   |      | 10   | ns   |
| t <sub>SU</sub>   | Global clock setup time                  | (2)               | 3.9   |     | 5.2   |       | 6.9  |      | ns   |
| t <sub>H</sub>    | Global clock hold time                   | (2)               | 0.0   |     | 0.0   |       | 0.0  |      | ns   |
| t <sub>FSU</sub>  | Global clock setup time of fast input    |                   | 2.5   |     | 3.0   |       | 3.0  |      | ns   |
| t <sub>FH</sub>   | Global clock hold time of fast input     |                   | 0.0   |     | 0.0   |       | 0.0  |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay             | C1 = 35 pF        | 1.0   | 3.5 | 1.0   | 4.8   | 1.0  | 6.4  | ns   |
| t <sub>CH</sub>   | Global clock high time                   |                   | 2.0   |     | 3.0   |       | 4.0  |      | ns   |
| t <sub>CL</sub>   | Global clock low time                    |                   | 2.0   |     | 3.0   |       | 4.0  |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                   | (2)               | 2.0   |     | 2.7   |       | 3.6  |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                    | (2)               | 0.2   |     | 0.3   |       | 0.5  |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay              | C1 = 35 pF<br>(2) | 1.0   | 5.4 | 1.0   | 7.3   | 1.0  | 9.7  | ns   |
| t <sub>ACH</sub>  | Array clock high time                    |                   | 2.0   |     | 3.0   |       | 4.0  |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                     |                   | 2.0   |     | 3.0   |       | 4.0  |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for clear and preset | (3)               | 2.0   |     | 3.0   |       | 4.0  |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock<br>period           | (2)               |       | 5.8 |       | 7.9   |      | 10.5 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency  | (2), (4)          | 172.4 |     | 126.6 |       | 95.2 |      | MHz  |
| t <sub>acnt</sub> | Minimum array clock<br>period            | (2)               |       | 5.8 |       | 7.9   |      | 10.5 | ns   |
| f <sub>acnt</sub> | Maximum internal array clock frequency   | (2), (4)          | 172.4 |     | 126.6 |       | 95.2 |      | MHz  |

E

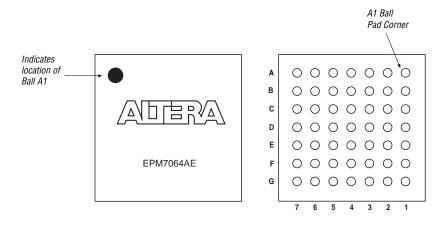
| Symbol            | Parameter                                                                                   | Conditions        |     |     | Speed | Grade |     |      | Unit |
|-------------------|---------------------------------------------------------------------------------------------|-------------------|-----|-----|-------|-------|-----|------|------|
|                   |                                                                                             |                   | -   | 5   | -     | 7     |     | 10   |      |
|                   |                                                                                             |                   | Min | Max | Min   | Max   | Min | Max  |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                                  |                   |     | 0.7 |       | 0.9   |     | 1.2  | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                              |                   |     | 0.7 |       | 0.9   |     | 1.2  | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                            |                   |     | 2.4 |       | 2.9   |     | 3.4  | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                       |                   |     | 2.1 |       | 2.8   |     | 3.7  | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                                     |                   |     | 0.3 |       | 0.5   |     | 0.6  | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                           |                   |     | 1.7 |       | 2.2   |     | 2.8  | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                                   |                   |     | 0.8 |       | 1.0   |     | 1.3  | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                                |                   |     | 0.0 |       | 0.0   |     | 0.0  | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$                        | C1 = 35 pF        |     | 0.9 |       | 1.2   |     | 1.6  | ns   |
| t <sub>OD2</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$                        | C1 = 35 pF<br>(5) |     | 1.4 |       | 1.7   |     | 2.1  | ns   |
| t <sub>OD3</sub>  | Output buffer and pad<br>delay, slow slew rate = on<br>$V_{CCIO} = 2.5 V \text{ or } 3.3 V$ | C1 = 35 pF        |     | 5.9 |       | 6.2   |     | 6.6  | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 3.3 V$                   | C1 = 35 pF        |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 2.5 V$                   | C1 = 35 pF<br>(5) |     | 4.5 |       | 4.5   |     | 5.5  | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay,<br>slow slew rate = on<br>$V_{CCIO} = 3.3 V$                    | C1 = 35 pF        |     | 9.0 |       | 9.0   |     | 10.0 | ns   |
| t <sub>XZ</sub>   | Output buffer disable delay                                                                 | C1 = 5 pF         |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>SU</sub>   | Register setup time                                                                         |                   | 1.5 |     | 2.1   |       | 2.9 |      | ns   |
| t <sub>H</sub>    | Register hold time                                                                          |                   | 0.7 |     | 0.9   |       | 1.2 |      | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                           |                   | 1.1 |     | 1.6   |       | 1.6 |      | ns   |
| t <sub>FH</sub>   | Register hold time of fast input                                                            |                   | 1.4 |     | 1.4   |       | 1.4 |      | ns   |
| t <sub>RD</sub>   | Register delay                                                                              |                   |     | 0.9 |       | 1.2   |     | 1.6  | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                                         |                   |     | 0.5 |       | 0.8   |     | 1.2  | ns   |

-

| Symbol            | Parameter            | Conditions | Speed Grade |     |     |     |     |     |    |
|-------------------|----------------------|------------|-------------|-----|-----|-----|-----|-----|----|
|                   |                      |            | -           | -5  |     | -7  |     | 10  | 1  |
|                   |                      |            | Min         | Max | Min | Max | Min | Max |    |
| t <sub>IC</sub>   | Array clock delay    |            |             | 1.2 |     | 1.6 |     | 2.1 | ns |
| t <sub>EN</sub>   | Register enable time |            |             | 0.8 |     | 1.0 |     | 1.3 | ns |
| t <sub>GLOB</sub> | Global control delay |            |             | 1.0 |     | 1.5 |     | 2.0 | ns |
| t <sub>PRE</sub>  | Register preset time |            |             | 1.6 |     | 2.3 |     | 3.0 | ns |
| t <sub>CLR</sub>  | Register clear time  |            |             | 1.6 |     | 2.3 |     | 3.0 | ns |
| t <sub>PIA</sub>  | PIA delay            | (2)        |             | 1.7 |     | 2.4 |     | 3.2 | ns |
| t <sub>LPA</sub>  | Low-power adder      | (6)        |             | 4.0 |     | 4.0 |     | 5.0 | ns |

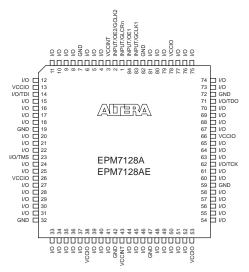
E

| Symbol            | Parameter            | Conditions | Speed Grade |     |     |     |     |     |    |
|-------------------|----------------------|------------|-------------|-----|-----|-----|-----|-----|----|
|                   |                      |            | -           | -7  |     | -10 |     | 12  | 1  |
|                   |                      |            | Min         | Max | Min | Max | Min | Max |    |
| t <sub>IC</sub>   | Array clock delay    |            |             | 1.8 |     | 2.3 |     | 2.9 | ns |
| t <sub>EN</sub>   | Register enable time |            |             | 1.0 |     | 1.3 |     | 1.7 | ns |
| t <sub>GLOB</sub> | Global control delay |            |             | 1.7 |     | 2.2 |     | 2.7 | ns |
| t <sub>PRE</sub>  | Register preset time |            |             | 1.0 |     | 1.4 |     | 1.7 | ns |
| t <sub>CLR</sub>  | Register clear time  |            |             | 1.0 |     | 1.4 |     | 1.7 | ns |
| t <sub>PIA</sub>  | PIA delay            | (2)        |             | 3.0 |     | 4.0 |     | 4.8 | ns |
| t <sub>LPA</sub>  | Low-power adder      | (6)        |             | 4.5 |     | 5.0 |     | 5.0 | ns |


Г

| Symbol            | Parameter                                                                          | Conditions        |     |     |     | Speed | Grade |      |     |      | Unit |
|-------------------|------------------------------------------------------------------------------------|-------------------|-----|-----|-----|-------|-------|------|-----|------|------|
|                   |                                                                                    |                   | -   | 6   | -   | 7     | -1    | 10   | -1  | 12   |      |
|                   |                                                                                    |                   | Min | Max | Min | Max   | Min   | Max  | Min | Max  |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                         |                   |     | 0.6 |     | 0.7   |       | 0.9  |     | 1.1  | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                     |                   |     | 0.6 |     | 0.7   |       | 0.9  |     | 1.1  | ns   |
| t <sub>FIN</sub>  | Fast input delay                                                                   |                   |     | 2.7 |     | 3.1   |       | 3.6  |     | 3.9  | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                              |                   |     | 2.5 |     | 3.2   |       | 4.3  |     | 5.1  | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                            |                   |     | 0.7 |     | 0.8   |       | 1.1  |     | 1.3  | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                  |                   |     | 2.4 |     | 3.0   |       | 4.1  |     | 4.9  | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                          |                   |     | 2.4 |     | 3.0   |       | 4.1  |     | 4.9  | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                       |                   |     | 0.0 |     | 0.0   |       | 0.0  |     | 0.0  | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$               | C1 = 35 pF        |     | 0.4 |     | 0.6   |       | 0.7  |     | 0.9  | ns   |
| t <sub>OD2</sub>  | Output buffer and pad<br>delay, slow slew rate = off<br>$V_{CCIO} = 2.5 V$         | C1 = 35 pF<br>(5) |     | 0.9 |     | 1.1   |       | 1.2  |     | 1.4  | ns   |
| t <sub>OD3</sub>  | Output buffer and pad<br>delay, slow slew rate = on<br>$V_{CCIO}$ = 2.5 V or 3.3 V | C1 = 35 pF        |     | 5.4 |     | 5.6   |       | 5.7  |     | 5.9  | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$                | C1 = 35 pF        |     | 4.0 |     | 4.0   |       | 5.0  |     | 5.0  | ns   |
| t <sub>ZX2</sub>  | Output buffer enable<br>delay, slow slew rate = off<br>$V_{CCIO} = 2.5 V$          | C1 = 35 pF<br>(5) |     | 4.5 |     | 4.5   |       | 5.5  |     | 5.5  | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$                 | C1 = 35 pF        |     | 9.0 |     | 9.0   |       | 10.0 |     | 10.0 | ns   |
| t <sub>XZ</sub>   | Output buffer disable<br>delay                                                     | C1 = 5 pF         |     | 4.0 |     | 4.0   |       | 5.0  |     | 5.0  | ns   |
| t <sub>SU</sub>   | Register setup time                                                                |                   | 1.9 |     | 2.4 |       | 3.1   |      | 3.8 |      | ns   |
| t <sub>H</sub>    | Register hold time                                                                 |                   | 1.5 |     | 2.2 |       | 3.3   |      | 4.3 |      | ns   |
| t <sub>FSU</sub>  | Register setup time of fast input                                                  |                   | 0.8 |     | 1.1 |       | 1.1   |      | 1.1 |      | ns   |
| t <sub>FH</sub>   | Register hold time of fast input                                                   |                   | 1.7 |     | 1.9 |       | 1.9   |      | 1.9 |      | ns   |

| Symbol            | Parameter            | Conditions | Speed Grade |      |     |      |     |      |     |      |    |
|-------------------|----------------------|------------|-------------|------|-----|------|-----|------|-----|------|----|
|                   |                      |            | -           | 6    | -   | 7    | -1  | 0    | -1  | 2    | ]  |
|                   |                      |            | Min         | Мах  | Min | Мах  | Min | Max  | Min | Max  | 1  |
| t <sub>RD</sub>   | Register delay       |            |             | 1.7  |     | 2.1  |     | 2.8  |     | 3.3  | ns |
| t <sub>COMB</sub> | Combinatorial delay  |            |             | 1.7  |     | 2.1  |     | 2.8  |     | 3.3  | ns |
| t <sub>IC</sub>   | Array clock delay    |            |             | 2.4  |     | 3.0  |     | 4.1  |     | 4.9  | ns |
| t <sub>EN</sub>   | Register enable time |            |             | 2.4  |     | 3.0  |     | 4.1  |     | 4.9  | ns |
| t <sub>GLOB</sub> | Global control delay |            |             | 1.0  |     | 1.2  |     | 1.7  |     | 2.0  | ns |
| t <sub>PRE</sub>  | Register preset time |            |             | 3.1  |     | 3.9  |     | 5.2  |     | 6.2  | ns |
| t <sub>CLR</sub>  | Register clear time  |            |             | 3.1  |     | 3.9  |     | 5.2  |     | 6.2  | ns |
| t <sub>PIA</sub>  | PIA delay            | (2)        |             | 0.9  |     | 1.1  |     | 1.5  |     | 1.8  | ns |
| t <sub>LPA</sub>  | Low-power adder      | (6)        |             | 11.0 |     | 10.0 |     | 10.0 |     | 10.0 | ns |


#### Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outlines not drawn to scale.



#### Figure 16. 84-Pin PLCC Package Pin-Out Diagram

Package outline not drawn to scale.



### Version 4.3

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.3:

- Added extended temperature devices to document
- Updated Table 14.

## Version 4.2

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.2:

- Removed *Note* (1) from Table 2.
- Removed *Note* (4) from Tables 3 and 4.

## Version 4.1

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.1:

- Updated leakage current information in Table 15.
- Updated Note (9) of Table 15.
- Updated *Note* (1) of Tables 17 through 30.



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit\_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera valtera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. **Ex. EN ISO 9001** 

101 111 100 000.

Altera Corporation