
E·XFL

Intel - EPM7256AEFC256-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	164
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256aefc256-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlasterTM serial/universal serial bus (USB) communications cable, ByteBlasterMVTM parallel port download cable, and BitBlasterTM serial download cable, as well as programming hardware from third-party manufacturers and any JamTM STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

General Description

MAX 7000A (including MAX 7000AE) devices are high-density, highperformance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROMbased MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2*. See Table 2.

Table 2. MAX 7000A Speed Grades							
Device	Speed Grade						
	-4	-5	-6	-7	-10	-12	
EPM7032AE	>			\checkmark	\checkmark		
EPM7064AE	>			\checkmark	\checkmark		
EPM7128A			\checkmark	~	~	~	
EPM7128AE		~		\checkmark	\checkmark		
EPM7256A			\checkmark	\checkmark	\checkmark	\checkmark	
EPM7256AE		\checkmark		~	~		
EPM7512AE				\checkmark	\checkmark	\checkmark	

The MAX 7000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high-density integration of SSI, MSI, and LSI logic functions. It easily integrates multiple devices including PALs, GALs, and 22V10s devices. MAX 7000A devices are available in a wide range of packages, including PLCC, BGA, FineLine BGA, Ultra FineLine BGA, PQFP, and TQFP packages. See Table 3 and Table 4.

Table 3. MAX 700	OA Maximum U	lser I/O Pins	Note (1)			
Device	44-Pin PLCC	44-Pin TQFP	49-Pin Ultra FineLine BGA (2)	84-Pin PLCC	100-Pin TQFP	100-Pin FineLine BGA (3)
EPM7032AE	36	36				
EPM7064AE	36	36	41		68	68
EPM7128A				68	84	84
EPM7128AE				68	84	84
EPM7256A					84	
EPM7256AE					84	84
EPM7512AE						

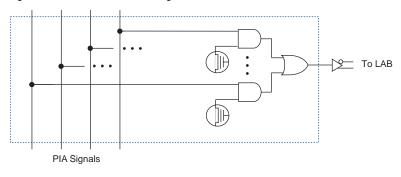
Table 4. MAX 7000A Maximum User I/O PinsNote (1)								
Device	144-Pin TQFP	169-Pin Ultra FineLine BGA (2)	208-Pin PQFP	256-Pin BGA	256-Pin FineLine BGA (3)			
EPM7032AE								
EPM7064AE								
EPM7128A	100				100			
EPM7128AE	100	100			100			
EPM7256A	120		164		164			
EPM7256AE	120		164		164			
EPM7512AE	120		176	212	212			

Notes to tables:

- (1) When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.
- (2) All Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.
- (3) All FineLine BGA packages are footprint-compatible via the SameFrame feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.

MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and highspeed parallel expander product terms, providing up to 32 product terms per macrocell.


MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems.

MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

•••

For more information on development tools, see the *MAX+PLUS II Programmable Logic Development System & Software Data Sheet* and the *Quartus Programmable Logic Development System & Software Data Sheet*.

Figure 5. MAX 7000A PIA Routing

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

For more information on using the Jam STAPL language, see *Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor)* and *Application Note 122 (Using Jam STAPL for ISP & ICR via an Embedded Processor)*.

ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000A Device

The time required to program a single MAX 7000A device in-system can be calculated from the following formula:

$t_{PROG} = t_{PPU}$	$LSE + \frac{Cycle_{PTCK}}{f_{TCK}}$
where: t_{PROC} t_{PPUL}	
Cycle f _{TCK}	 PTCK = Number of TCK cycles to program a device TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula:

$t_{VER} = t_{VPULSE} + \frac{C_2}{2}$	^{jcle} VTCK ^f TCK
where: t_{VER} t_{VPULSE} $Cycle_{VTCK}$	= Verify time= Sum of the fixed times to verify the EEPROM cells= Number of TCK cycles to verify a device

The programming times described in Tables 5 through 7 are associated with the worst-case method using the enhanced ISP algorithm.

Device	Progra	mming	Stand-Alone	Verification
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}
EPM7032AE	2.00	55,000	0.002	18,000
EPM7064AE	2.00	105,000	0.002	35,000
EPM7128AE	2.00	205,000	0.002	68,000
EPM7256AE	2.00	447,000	0.002	149,000
EPM7512AE	2.00	890,000	0.002	297,000
EPM7128A (1)	5.11	832,000	0.03	528,000
EPM7256A (1)	6.43	1,603,000	0.03	1,024,000

Tables 6 and 7 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 6. MAX 7000A In-System Programming Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032AE	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	S		
EPM7064AE	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	s		
EPM7128AE	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	s		
EPM7256AE	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	s		
EPM7512AE	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	s		
EPM7128A (1)	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S		
EPM7256A (1)	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S		

Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032AE	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	s		
EPM7064AE	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S		
EPM7128AE	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S		
EPM7256AE	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S		
EPM7512AE	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S		
EPM7128A <i>(1)</i>	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S		
EPM7256A (1)	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S		

Note to tables:

(1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

Programming with External Hardware

MAX 7000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the MPU, and the appropriate device adapter. The MPU performs continuity checks to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices.

For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) **Boundary-Scan** Support

MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A devices. The pin-out tables, available from the Altera web site (http://www.altera.com), show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

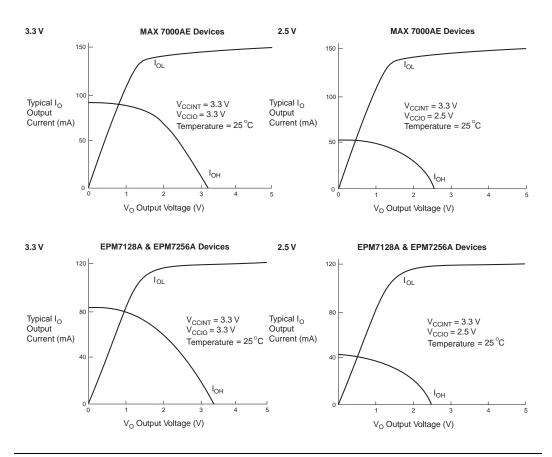
Table 9. MAX 7000A Boundary-Scan Register Length							
Device	Boundary-Scan Register Length						
EPM7032AE	96						
EPM7064AE	192						
EPM7128A	288						
EPM7128AE	288						
EPM7256A	480						
EPM7256AE	480						
EPM7512AE	624						

Table 10. 32-Bit MAX 7000A Device IDCODE Note (1)										
Device		IDCODE (32 Bits)								
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)						
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1						
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1						
EPM7128A	0000	0111 0001 0010 1000	00001101110	1						
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1						
EPM7256A	0000	0111 0010 0101 0110	00001101110	1						
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1						
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1						

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.


See *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)* for more information on JTAG BST.

MAX 7000A Programmable Logic Device Data Sheet

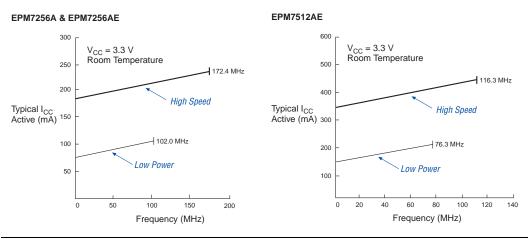
Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically.
- (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.
- (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28.
- (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is $\pm 300 \ \mu$ A. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified.
- (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system.
- (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF.
- (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μs. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.

Figure 10 shows the typical output drive characteristics of MAX 7000A devices.

Timing Model

MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.


Symbol	Parameter	Conditions	Speed Grade						Unit
			-	4	-	7	-10		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.6		1.1		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.6		1.1		1.4	ns
t _{FIN}	Fast input delay			2.5		3.0		3.7	ns
t _{SEXP}	Shared expander delay			1.8		3.0		3.9	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t _{LAD}	Logic array delay			1.5		2.5		3.2	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.0		1.5		1.5		ns
t _{FH}	Register hold time of fast input		1.5		1.5		1.5		ns
t _{RD}	Register delay			0.7		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.6		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.9		2.5	ns

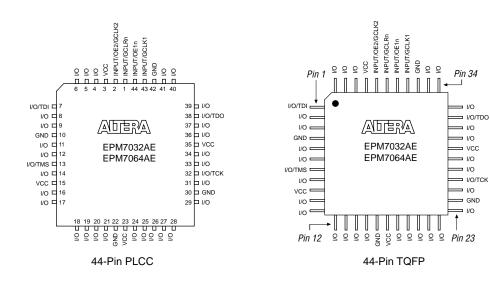
Altera Corporation

E

Symbol	Parameter	Conditions	Speed Grade							
			-7		-10		-12		1	
			Min	Max	Min	Max	Min	Max		
t _{IC}	Array clock delay			1.8		2.3		2.9	ns	
t _{EN}	Register enable time			1.0		1.3		1.7	ns	
t _{GLOB}	Global control delay			1.7		2.2		2.7	ns	
t _{PRE}	Register preset time			1.0		1.4		1.7	ns	
t _{CLR}	Register clear time			1.0		1.4		1.7	ns	
t _{PIA}	PIA delay	(2)		3.0		4.0		4.8	ns	
t _{LPA}	Low-power adder	(6)		4.5		5.0		5.0	ns	

Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	0.8		1.0		1.4		1.6		ns
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz
t _{acnt}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz

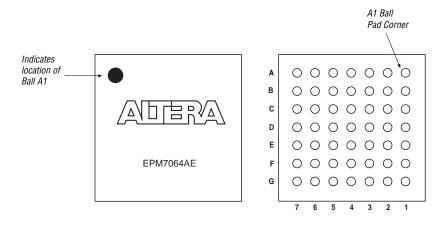
Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 2 of 2)


Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 14 through 23 show the package pin-out diagrams for MAX 7000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram


Package outlines not drawn to scale.

Altera Corporation

Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outlines not drawn to scale.

Figure 16. 84-Pin PLCC Package Pin-Out Diagram

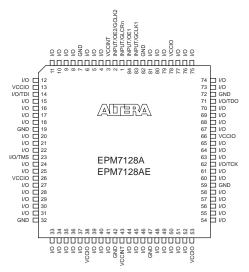


Figure 17. 100-Pin TQFP Package Pin-Out Diagram

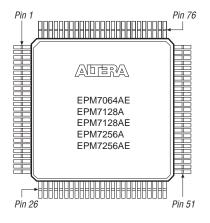
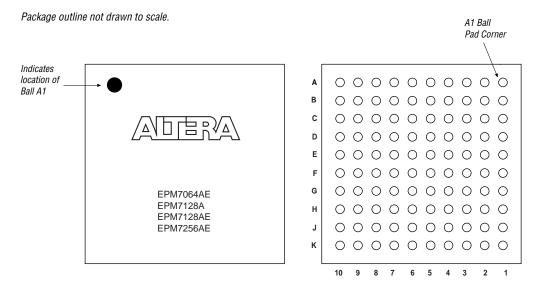
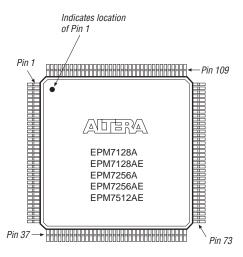
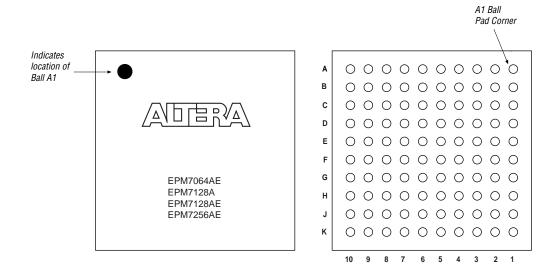
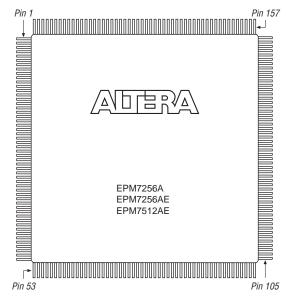



Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

Figure 19. 144-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

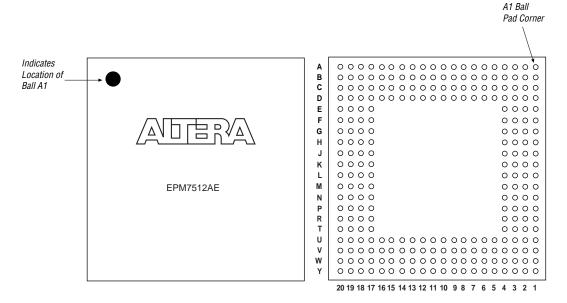

Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram

Figure 21. 208-Pin PQFP Package Pin-Out Diagram

Figure 22. 256-Pin BGA Package Pin-Out Diagram

