

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Obsolete
In System Programmable
5.5 ns
3V ~ 3.6V
16
256
5000
164
0°C ~ 70°C (TA)
Surface Mount
208-BFQFP
208-PQFP (28x28)
https://www.e-xfl.com/product-detail/intel/epm7256aegc208-5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlaster™ serial/universal serial bus (USB) communications cable, ByteBlasterMV™ parallel port download cable, and BitBlaster™ serial download cable, as well as programming hardware from third-party manufacturers and any Jam™ STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

General Description

MAX 7000A (including MAX 7000AE) devices are high-density, high-performance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

Device	Speed Grade								
	-4	-5	-6	-7	-10	-12			
EPM7032AE	✓			✓	✓				
EPM7064AE	✓			✓	✓				
EPM7128A			✓	✓	✓	✓			
EPM7128AE		✓		✓	✓				
EPM7256A			✓	✓	✓	✓			
EPM7256AE		✓		✓	✓				
EPM7512AE				✓	✓	✓			

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

- Global clock signal. This mode achieves the fastest clock-to-output performance.
- Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 7000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear from the register are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active-low dedicated global clear pin (GCLRn). Upon power-up, each register in a MAX 7000AE device may be set to either a high or low state. This power-up state is specified at design entry. Upon power-up, each register in EPM7128A and EPM7256A devices are set to a low state.

All MAX 7000A I/O pins have a fast input path to a macrocell register. This dedicated path allows a signal to bypass the PIA and combinatorial logic and be clocked to an input D flipflop with an extremely fast (as low as 2.5 ns) input setup time.

Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Shareable expanders can be shared by any or all macrocells in an LAB.

Figure 3. MAX 7000A Shareable Expanders

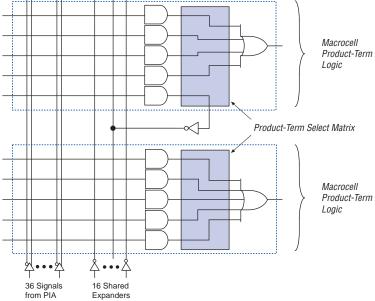
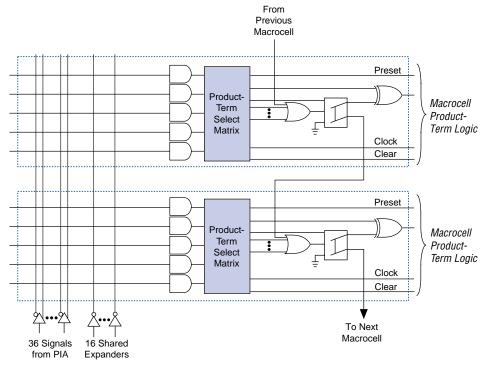



Figure 4. MAX 7000A Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

PIA

6 or 10 Global
Output Enable Signals (1)

From
Macrocell

Past Input to
Macrocell

Register

To PIA

Figure 6. I/O Control Block of MAX 7000A Devices

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability

MAX 7000A devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000A architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 3.3-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k Ω .

MAX 7000AE devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. This feature is only available in EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, and EPM7512AE devices.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000A devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster serial/USB communications cable, ByteBlasterMV parallel port download cable, and BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a predefined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000AE devices can be programmed with either an adaptive or constant (non-adaptive) algorithm. EPM7128A and EPM7256A device can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD 71, can be used to program MAX 7000A devices with incircuit testers, PCs, or embedded processors.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 7000A Device

The time required to program a single MAX 7000A device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time

 t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells

 $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

Table 7. MAX 70	1000A Stand-Alone Verification Times for Different Test Clock Frequencies										
Device	f _{TCK}										
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032AE	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	s		
EPM7064AE	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S		
EPM7128AE	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S		
EPM7256AE	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S		
EPM7512AE	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S		
EPM7128A (1)	0.08	0.14	0.29	0.56	1.09	2.67	5.31	10.59	S		
EPM7256A (1)	0.13	0.24	0.54	1.06	2.08	5.15	10.27	20.51	S		

Note to tables:

(1) EPM7128A and EPM7256A devices can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

Programming with External Hardware

MAX 7000A devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the MPU, and the appropriate device adapter. The MPU performs continuity checks to ensure adequate electrical contact between the adapter and the device.

For more information, see the *Altera Programming Hardware Data Sheet*.

The Altera software can use text- or waveform-format test vectors created with the Altera Text Editor or Waveform Editor to test the programmed device. For added design verification, designers can perform functional testing to compare the functional device behavior with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers provide programming support for Altera devices.

For more information, see *Programming Hardware Manufacturers*.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 7000A devices include the JTAG BST circuitry defined by IEEE Std. 1149.1. Table 8 describes the JTAG instructions supported by MAX 7000A devices. The pin-out tables, available from the Altera web site (http://www.altera.com), show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 8. MAX 7000A	JTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation
IDCODE	Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is available for MAX 7000AE devices only
UESCODE	These instructions select the user electronic signature (UESCODE) and allow the UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A and EPM7256A devices only.
ISP Instructions	These instructions are used when programming MAX 7000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam STAPL File, JBC File, or SVF File via an embedded processor or test equipment.

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

Table 9. MAX 7000A Boundary-Scan Register Length							
Device	Boundary-Scan Register Length						
EPM7032AE	96						
EPM7064AE	192						
EPM7128A	288						
EPM7128AE	288						
EPM7256A	480						
EPM7256AE	480						
EPM7512AE	624						

Table 10. 32	Table 10. 32-Bit MAX 7000A Device IDCODENote (1)										
Device	IDCODE (32 Bits)										
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)							
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1							
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1							
EPM7128A	0000	0111 0001 0010 1000	00001101110	1							
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1							
EPM7256A	0000	0111 0010 0101 0110	00001101110	1							
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1							
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1							

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST.

Power Sequencing & Hot-Socketing

Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order.

Signals can be driven into MAX 7000AE devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user.

MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V_{CCINT} and V_{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant.

EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up.

Design Security

All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow.

MAX 7000A Programmable Logic Device Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically.
- (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.
- (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28.
- (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is ±300 μA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified.
- (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system.
- (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF.
- (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.

Figure 10 shows the typical output drive characteristics of MAX 7000A devices.

3.3 V MAX 7000AE Devices 2.5 V MAX 7000AE Devices 150 150 100 100 V_{CCINT} = 3.3 V Typical I_O Typical I_O $V_{CCINT} = 3.3 V$ Output Output $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 \text{ V}$ Current (mA) Current (mA) Temperature = 25 °C Temperature = 25 °C 50 50 $I_{\cap H}$ 0 VO Output Voltage (V) Vo Output Voltage (V) EPM7128A & EPM7256A Devices 3.3 V 2.5 V EPM7128A & EPM7256A Devices 120 120 I_{OL} I_{OL}

Typical I_O

Output

Temperature = 25°C Current (mA)

V_{CCINT} = 3.3 V

 $V_{CCIO} = 3.3 V$

V_O Output Voltage (V)

Figure 10. Output Drive Characteristics of MAX 7000A Devices

Timing Model

Typical I_O

Current (mA)

Output

MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

80

40

V_{CCINT} = 3.3 V

 $V_{CCIO} = 2.5 V$

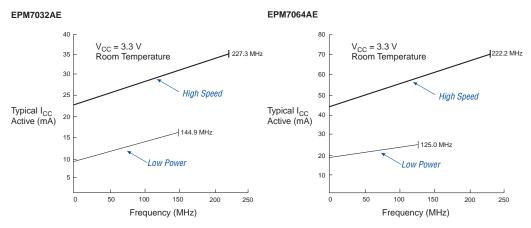
 I_{OH}

Vo Output Voltage (V)

Temperature = 25 °C

Symbol	Parameter	Conditions Speed Grade							
			-5 -			7 -10			7
			Min	Max	Min	Max	Min	Max	1
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{ACNT}	Minimum array clock period	(2)		5.2		7.7		10.2	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5		-7	-10		
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns
t_{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns
t _{FIN}	Fast input delay			2.5		3.0		3.4	ns
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t_{LAD}	Logic array delay			1.6		2.4		3.1	ns
t _{LAC}	Logic control array delay			0.7		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		1.3		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t_{SU}	Register setup time		1.4		2.1		2.9		ns
t_H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.1		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns
t _{RD}	Register delay			8.0		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.7		2.2	ns


Table 25	5. EPM7512AE External	Timing Paran	neters	Note (1)							
Symbol	Parameter	Conditions	tions Speed Grade								
			-7			10	-1	12			
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns		
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns		
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns		
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns		
t _{CH}	Global clock high time		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns		
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns		
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns		
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns		
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz		
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5		13.9	ns		
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz		

Symbol	Parameter	Conditions	Speed Grade						
			-	7		10	-12		
			Min	Max	Min	Max	Min	Max	1
t _{IC}	Array clock delay			1.8		2.3		2.9	ns
t _{EN}	Register enable time			1.0		1.3		1.7	ns
t_{GLOB}	Global control delay			1.7		2.2		2.7	ns
t _{PRE}	Register preset time			1.0		1.4		1.7	ns
t _{CLR}	Register clear time			1.0		1.4		1.7	ns
t_{PIA}	PIA delay	(2)		3.0		4.0		4.8	ns
t_{LPA}	Low-power adder	(6)		4.5		5.0		5.0	ns

Symbol	Parameter	Conditions	Speed Grade								Unit
			-	-6		-7 -		-10		12]
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{RD}	Register delay			1.7		2.1		2.8		3.3	ns
t _{COMB}	Combinatorial delay			1.7		2.1		2.8		3.3	ns
t _{IC}	Array clock delay			2.4		3.0		4.1		4.9	ns
t _{EN}	Register enable time			2.4		3.0		4.1		4.9	ns
t _{GLOB}	Global control delay			1.0		1.2		1.7		2.0	ns
t _{PRE}	Register preset time			3.1		3.9		5.2		6.2	ns
t _{CLR}	Register clear time			3.1		3.9		5.2		6.2	ns
t _{PIA}	PIA delay	(2)		0.9		1.1		1.5		1.8	ns
t_{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns

Figure 13 shows the typical supply current versus frequency for MAX 7000A devices.

Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2)

EPM7128A & EPM7128AE

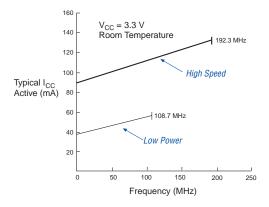


Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outlines not drawn to scale.

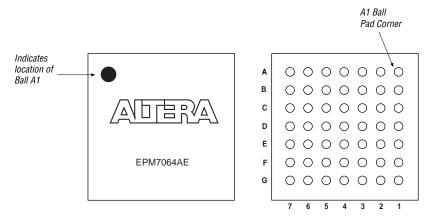
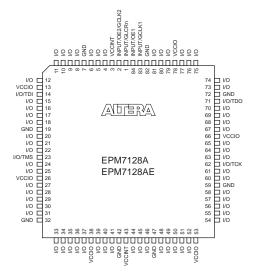



Figure 16. 84-Pin PLCC Package Pin-Out Diagram

Package outline not drawn to scale.

