Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 164 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256aeqc208-7 | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1. MAX 7000A Device Block Diagram #### Note: (1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables. ## **Logic Array Blocks** The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells. Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times ## **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. #### Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells. Shareable expanders can be shared by any or all macrocells in an LAB. Figure 3. MAX 7000A Shareable Expanders #### Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. The compiler can allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest-numbered macrocell can only lend parallel expanders, and the highest-numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell. ## **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ## Programming a Single MAX 7000A Device The time required to program a single MAX 7000A device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices. | Table 9. MAX 7000A Boundary-So | can Register Length | |--------------------------------|-------------------------------| | Device | Boundary-Scan Register Length | | EPM7032AE | 96 | | EPM7064AE | 192 | | EPM7128A | 288 | | EPM7128AE | 288 | | EPM7256A | 480 | | EPM7256AE | 480 | | EPM7512AE | 624 | | Table 10. 32 | Bit MAX 70 | 100A Device IDCODE No | ote (1) | | |--------------|---------------------|-----------------------|--------------------------------------|------------------| | Device | | IDCODE (32 E | Bits) | | | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer's
Identity (11 Bits) | 1 (1 Bit)
(2) | | EPM7032AE | 0001 | 0111 0000 0011 0010 | 00001101110 | 1 | | EPM7064AE | 0001 | 0111 0000 0110 0100 | 00001101110 | 1 | | EPM7128A | 0000 | 0111 0001 0010 1000 | 00001101110 | 1 | | EPM7128AE | 0001 | 0111 0001 0010 1000 | 00001101110 | 1 | | EPM7256A | 0000 | 0111 0010 0101 0110 | 00001101110 | 1 | | EPM7256AE | 0001 | 0111 0010 0101 0110 | 00001101110 | 1 | | EPM7512AE | 0001 | 0111 0101 0001 0010 | 00001101110 | 1 | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST. | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------------|--|-------------------------|------|------| | V _{IH} | High-level input voltage | | 1.7 | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | 0.8 | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} – 0.2 | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V$ (7) | 2.1 | | V | | | | I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7) | 2.0 | | V | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (7)$ | 1.7 | | V | | V _{OL} | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.2 | V | | | 2.5-V low-level output voltage | $I_{OL} = 100 \mu A DC, V_{CCIO} = 2.30 V (8)$ | | 0.2 | V | | | | I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8) | | 0.4 | V | | | | I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8) | | 0.7 | V | | կ | Input leakage current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (9)$ | -10 | 10 | μΑ | | I _{OZ} | Tri-state output off-state current | V _I = -0.5 to 5.5 V (9) | -10 | 10 | μΑ | | R _{ISP} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 to 3.6 V (10) | 20 | 50 | kΩ | | | during in-system programming | V _{CCIO} = 2.3 to 2.7 V (10) | 30 | 80 | kΩ | | | or during power-up | V _{CCIO} = 2.3 to 3.6 V (11) | 20 | 74 | kΩ | | Table 1 | 6. MAX 7000A Device Capacital | nce Note (12) | | | | | | | |------------------|-------------------------------|-------------------------------------|--|---|----|--|--|--| | Symbol | Parameter | Parameter Conditions Min Max Unit | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | Figure 10 shows the typical output drive characteristics of MAX 7000A devices. 3.3 V MAX 7000AE Devices 2.5 V MAX 7000AE Devices 150 150 100 100 V_{CCINT} = 3.3 V Typical I_O Typical I_O $V_{CCINT} = 3.3 V$ Output Output $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 \text{ V}$ Current (mA) Current (mA) Temperature = 25 °C Temperature = 25 °C 50 50 $I_{\cap H}$ 0 VO Output Voltage (V) Vo Output Voltage (V) EPM7128A & EPM7256A Devices 3.3 V 2.5 V EPM7128A & EPM7256A Devices 120 120 I_{OL} I_{OL} Typical I_O Output Temperature = 25°C Current (mA) V_{CCINT} = 3.3 V $V_{CCIO} = 3.3 V$ VO Output Voltage (V) Figure 10. Output Drive Characteristics of MAX 7000A Devices # **Timing Model** Typical I_O Current (mA) Output MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation. 80 40 V_{CCINT} = 3.3 V $V_{CCIO} = 2.5 V$ I_{OH} Vo Output Voltage (V) Temperature = 25 °C ## Figure 12. MAX 7000A Switching Waveforms t_R & t_F < 2 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V. | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | |-------------------|--|-------------------|-------------|-----|-------|-----|-------|------|-----|--|--| | | | | -4 | 4 | - | 7 | -1 | 0 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10.0 | ns | | | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 4.5 | | 7.5 | | 10.0 | ns | | | | t _{SU} | Global clock setup time | (2) | 2.8 | | 4.7 | | 6.2 | | ns | | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.1 | 1.0 | 5.1 | 1.0 | 7.0 | ns | | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.6 | | 3.6 | | ns | | | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.4 | | 0.6 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.6 | ns | | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | | | t _{CNT} | Minimum global clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | | | t _{ACNT} | Minimum array clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 5 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{FIN} | Fast input delay | | | 2.5 | | 3.0 | | 3.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t _{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 1.3 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay,
slow slew rate = on
V _{CCIO} = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.2 | | 1.6 | ns | | t _{COMB} | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | t_{IC} | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | |------------------|----------------------|------------|-------------|-----|-----|-----|-----|-----|----|--| | | | | - | -5 | | 7 | -10 | | 1 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{EN} | Register enable time | | | 0.7 | | 1.0 | | 1.3 | ns | | | t_{GLOB} | Global control delay | | | 1.1 | | 1.6 | | 2.0 | ns | | | t _{PRE} | Register preset time | | | 1.4 | | 2.0 | | 2.7 | ns | | | t _{CLR} | Register clear time | | | 1.4 | | 2.0 | | 2.7 | ns | | | t_{PIA} | PIA delay | (2) | | 1.4 | | 2.0 | | 2.6 | ns | | | t_{LPA} | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | |-------------------|--|-------------------|-------------|-----|-------|-----|------|------|-----|--| | | | · | -! | 5 | - | 7 | -1 | 10 | | | | | | | Min | Max | Min | Max | Min | Max | Ē | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 5.5 | | 7.5 | | 10 | ns | | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 5.5 | | 7.5 | | 10 | ns | | | t _{SU} | Global clock setup time | (2) | 3.9 | | 5.2 | | 6.9 | | ns | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.5 | 1.0 | 4.8 | 1.0 | 6.4 | ns | | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ASU} | Array clock setup time | (2) | 2.0 | | 2.7 | | 3.6 | | ns | | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.5 | | ns | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 5.4 | 1.0 | 7.3 | 1.0 | 9.7 | ns | | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | | t _{CNT} | Minimum global clock period | (2) | | 5.8 | | 7.9 | | 10.5 | ns | | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 172.4 | | 126.6 | | 95.2 | | MHz | | | t _{ACNT} | Minimum array clock period | (2) | | 5.8 | | 7.9 | | 10.5 | ns | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 172.4 | | 126.6 | | 95.2 | | MHz | | | Table 25 | 5. EPM7512AE External | Timing Paran | neters | Note (1) | | | | | | |-------------------|--|-------------------|--------|----------|-------|-------|------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | -7 | 7 | | 10 | -1 | 12 | | | | | - | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-
registered output | C1 = 35 pF
(2) | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 5.6 | | 7.6 | | 9.1 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 4.7 | 1.0 | 6.3 | 1.0 | 7.5 | ns | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 2.5 | | 3.5 | | 4.1 | | ns | | t _{AH} | Array clock hold time | (2) | 0.2 | | 0.3 | | 0.4 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 7.8 | 1.0 | 10.4 | 1.0 | 12.5 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 4.0 | | 5.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 8.6 | | 11.5 | | 13.9 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 116.3 | | 87.0 | | 71.9 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 8.6 | | 11.5 | | 13.9 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 116.3 | | 87.0 | | 71.9 | | MHz | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 7 | | 10 | | 12 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{FIN} | Fast input delay | | | 3.1 | | 3.6 | | 4.1 | ns | | t _{SEXP} | Shared expander delay | | | 2.7 | | 3.5 | | 4.4 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 2.2 | | 2.8 | | 3.5 | ns | | t _{LAC} | Logic control array delay | | | 1.0 | | 1.3 | | 1.7 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.0 | | 1.5 | | 1.7 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 1.5 | | 2.0 | | 2.2 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$ | C1 = 35 pF | | 6.0 | | 6.5 | | 6.7 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 2.1 | | 3.0 | | 3.5 | | ns | | t _H | Register hold time | | 0.6 | | 8.0 | | 1.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.6 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 1.3 | | 1.7 | | 2.1 | ns | | t _{COMB} | Combinatorial delay | | | 0.6 | | 0.8 | | 1.0 | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | |-------------------|----------------------|------------|-------------|------|-----|------|-----|------|-----|------|----| | | | | - | -6 | | -7 | | 10 | -12 | | 1 | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{RD} | Register delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{COMB} | Combinatorial delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | t _{IC} | Array clock delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{EN} | Register enable time | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.2 | | 1.7 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{CLR} | Register clear time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | t _{PIA} | PIA delay | (2) | | 0.9 | | 1.1 | | 1.5 | | 1.8 | ns | | t_{LPA} | Low-power adder | (6) | | 11.0 | | 10.0 | | 10.0 | | 10.0 | ns | Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 2 of 2) # Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information. Figures 14 through 23 show the package pin-out diagrams for MAX 7000A devices. Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram Package outlines not drawn to scale. Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram Package outlines not drawn to scale. Figure 16. 84-Pin PLCC Package Pin-Out Diagram Package outline not drawn to scale. Figure 17. 100-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram Figure 22. 256-Pin BGA Package Pin-Out Diagram Package outline not drawn to scale. Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram Package outline not drawn to scale. ## Revision History The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions. #### Version 4.5 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.5: Updated text in the "Power Sequencing & Hot-Socketing" section. ### Version 4.4 The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.4: - Added Tables 5 through 7. - Added "Programming Sequence" on page 17 and "Programming Times" on page 18.