Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|---| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 5.5 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 120 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm7256aetc144-5 | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Functional Description The MAX 7000A architecture includes the following elements: - Logic array blocks (LABs) - Macrocells - Expander product terms (shareable and parallel) - Programmable interconnect array - I/O control blocks The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices. Figure 1. MAX 7000A Device Block Diagram ### Note: (1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables. ### **Logic Array Blocks** The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells. Each LAB is fed by the following signals: - 36 signals from the PIA that are used for general logic inputs - Global controls that are used for secondary register functions - Direct input paths from I/O pins to the registers that are used for fast setup times Figure 4. MAX 7000A Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. ## **Programmable Interconnect Array** Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB. ### **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ### Programming a Single MAX 7000A Device The time required to program a single MAX 7000A device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: t_{PROG} = Programming time t_{PPULSE} = Sum of the fixed times to erase, program, and verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device | Table 8. MAX 7000A | JTAG Instructions | |--------------------|--| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation | | IDCODE | Selects the IDCODE register and places it between the TDI and TDO pins, allowing the IDCODE to be serially shifted out of TDO | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE value to be shifted out of TDO. The USERCODE instruction is available for MAX 7000AE devices only | | UESCODE | These instructions select the user electronic signature (UESCODE) and allow the UESCODE to be shifted out of TDO. UESCODE instructions are available for EPM7128A and EPM7256A devices only. | | ISP Instructions | These instructions are used when programming MAX 7000A devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, or BitBlaster download cable, or using a Jam STAPL File, JBC File, or SVF File via an embedded processor or test equipment. | # Programmable Speed/Power Control MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters. # Output Configuration MAX 7000A device outputs can be programmed to meet a variety of system-level requirements. ### MultiVolt I/O Interface The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a slightly greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals. Table 12 describes the MAX 7000A MultiVolt I/O support. | Table 12. MAX 70 | Table 12. MAX 7000A MultiVolt I/O Support | | | | | | | | | | |---------------------------|--|----------|----------|----------|----------|----------|--|--|--|--| | V _{CCIO} Voltage | V _{CCIO} Voltage Input Signal (V) Output Signal (V) | | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | | 2.5 | ✓ | ✓ | ✓ | ✓ | | | | | | | | 3.3 | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|--------------------------------------|--|-------------------------|------|------| | V _{IH} | High-level input voltage | | 1.7 | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | 0.8 | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} – 0.2 | | V | | | 2.5-V high-level output voltage | $I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V$ (7) | 2.1 | | V | | | | I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (7) | 2.0 | | V | | | | $I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (7)$ | 1.7 | | V | | 0_ | 3.3-V low-level TTL output voltage | $I_{OL} = 8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | | 0.2 | V | | | 2.5-V low-level output voltage | $I_{OL} = 100 \mu A DC, V_{CCIO} = 2.30 V (8)$ | | 0.2 | V | | | | I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (8) | | 0.4 | V | | | | I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (8) | | 0.7 | V | | կ | Input leakage current | $V_I = -0.5 \text{ to } 5.5 \text{ V } (9)$ | -10 | 10 | μΑ | | I _{OZ} | Tri-state output off-state current | V _I = -0.5 to 5.5 V (9) | -10 | 10 | μΑ | | R _{ISP} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 to 3.6 V (10) | 20 | 50 | kΩ | | | during in-system programming | V _{CCIO} = 2.3 to 2.7 V (10) | 30 | 80 | kΩ | | | or during power-up | V _{CCIO} = 2.3 to 3.6 V (11) | 20 | 74 | kΩ | | Table 1 | 6. MAX 7000A Device Capacital | nce Note (12) | | | | | | | |------------------|-------------------------------|-------------------------------------|--|---|----|--|--|--| | Symbol | Parameter | Parameter Conditions Min Max U | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### MAX 7000A Programmable Logic Device Data Sheet #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically. - (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. - (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28. - (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current. - (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is ±300 μA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified. - (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system. - (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up. - (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF. - (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information. | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|--|----------------|-------|-----|-------|-------|-------|-----|------| | | | | | 4 | | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{PD2} | I/O input to non-registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10 | ns | | t _{SU} | Global clock setup time | (2) | 2.9 | | 4.7 | | 6.3 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 6.7 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.5 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.5 | | 0.5 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.4 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.4 | | 7.2 | | 9.7 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 227.3 | | 138.9 | | 103.1 | | MHz | | Table 20 | D. EPM7064AE Internal Ti | ming Parameters (| Part 2 o | f 2) | Note (1) | | | | | |-------------------|--------------------------|-------------------|----------|-------|----------|-------|-----|-----|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | - | -4 -7 | | | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{EN} | Register enable time | | | 0.6 | | 1.0 | | 1.2 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.5 | | 2.2 | ns | | t _{PRE} | Register preset time | | | 1.3 | | 2.1 | | 2.9 | ns | | t _{CLR} | Register clear time | | | 1.3 | | 2.1 | | 2.9 | ns | | t_{PIA} | PIA delay | (2) | | 1.0 | | 1.7 | | 2.3 | ns | | t_{LPA} | Low-power adder | (6) | | 3.5 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 5 | | -7 | | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{FIN} | Fast input delay | | | 2.5 | | 3.0 | | 3.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t _{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 1.3 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay,
slow slew rate = on
V _{CCIO} = 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t_{SU} | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | t_H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | t _{FSU} | Register setup time of fast input | | 1.1 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 0.8 | | 1.2 | | 1.6 | ns | | t _{COMB} | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | t_{IC} | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |------------------|----------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | -5 | | 7 | -10 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t _{EN} | Register enable time | | | 0.7 | | 1.0 | | 1.3 | ns | | t_{GLOB} | Global control delay | | | 1.1 | | 1.6 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 1.4 | | 2.0 | | 2.7 | ns | | t _{CLR} | Register clear time | | | 1.4 | | 2.0 | | 2.7 | ns | | t_{PIA} | PIA delay | (2) | | 1.4 | | 2.0 | | 2.6 | ns | | t_{LPA} | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|----------------------|------------|-----|-----|-------|-------|-----|-----|------| | | | | - | -5 | | 7 | -10 | | | | | | | Min | Max | Min | Max | Min | Max | | | t_{IC} | Array clock delay | | | 1.2 | | 1.6 | | 2.1 | ns | | t_{EN} | Register enable time | | | 0.8 | | 1.0 | | 1.3 | ns | | t _{GLOB} | Global control delay | | | 1.0 | | 1.5 | | 2.0 | ns | | t _{PRE} | Register preset time | | | 1.6 | | 2.3 | | 3.0 | ns | | t _{CLR} | Register clear time | | | 1.6 | | 2.3 | | 3.0 | ns | | t_{PIA} | PIA delay | (2) | | 1.7 | | 2.4 | | 3.2 | ns | | t_{LPA} | Low-power adder | (6) | | 4.0 | | 4.0 | | 5.0 | ns | | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | |-------------------|---|-------------------|-----|-----|-------|-------|-----|------|------| | | | | - | 7 | | 10 | | 12 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 0.9 | | 1.0 | ns | | t _{FIN} | Fast input delay | | | 3.1 | | 3.6 | | 4.1 | ns | | t _{SEXP} | Shared expander delay | | | 2.7 | | 3.5 | | 4.4 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 2.2 | | 2.8 | | 3.5 | ns | | t _{LAC} | Logic control array delay | | | 1.0 | | 1.3 | | 1.7 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.0 | | 1.5 | | 1.7 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 1.5 | | 2.0 | | 2.2 | ns | | t _{OD3} | Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$ | C1 = 35 pF | | 6.0 | | 6.5 | | 6.7 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 5.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 2.1 | | 3.0 | | 3.5 | | ns | | t _H | Register hold time | | 0.6 | | 8.0 | | 1.0 | | ns | | t _{FSU} | Register setup time of fast input | | 1.6 | | 1.6 | | 1.6 | | ns | | t _{FH} | Register hold time of fast input | | 1.4 | | 1.4 | | 1.4 | | ns | | t_{RD} | Register delay | | | 1.3 | | 1.7 | | 2.1 | ns | | t _{COMB} | Combinatorial delay | | | 0.6 | | 0.8 | | 1.0 | ns | | Symbol | Parameter | Conditions | | | | Speed | Grade | | | | Unit | |------------------|---|-------------------|-----|-----|-----|-------|-------|------|-----|------|------| | | | | - | 6 | - | 7 | -1 | 10 | -1 | 12 | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t_{IN} | Input pad and buffer delay | | | 0.6 | | 0.7 | | 0.9 | | 1.1 | ns | | t_{IO} | I/O input pad and buffer delay | | | 0.6 | | 0.7 | | 0.9 | | 1.1 | ns | | t_{FIN} | Fast input delay | | | 2.7 | | 3.1 | | 3.6 | | 3.9 | ns | | t_{SEXP} | Shared expander delay | | | 2.5 | | 3.2 | | 4.3 | | 5.1 | ns | | t_{PEXP} | Parallel expander delay | | | 0.7 | | 0.8 | | 1.1 | | 1.3 | ns | | t_{LAD} | Logic array delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{LAC} | Logic control array delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 3.3 V | C1 = 35 pF | | 0.4 | | 0.6 | | 0.7 | | 0.9 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF
(5) | | 0.9 | | 1.1 | | 1.2 | | 1.4 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.4 | | 5.6 | | 5.7 | | 5.9 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$ | C1 = 35 pF
(5) | | 4.5 | | 4.5 | | 5.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | | 5.0 | ns | | t _{SU} | Register setup time | | 1.9 | | 2.4 | | 3.1 | | 3.8 | | ns | | t _H | Register hold time | | 1.5 | | 2.2 | | 3.3 | | 4.3 | | ns | | t _{FSU} | Register setup time of fast input | | 0.8 | | 1.1 | | 1.1 | | 1.1 | | ns | | t _{FH} | Register hold time of fast input | | 1.7 | | 1.9 | | 1.9 | | 1.9 | | ns | | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | |-------------------|----------------------|------------|-------------|------|-----|------|-----|------|-----|------|----|--| | | | | -6 | | -7 | | -10 | | -12 | | - | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{RD} | Register delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | | t _{COMB} | Combinatorial delay | | | 1.7 | | 2.1 | | 2.8 | | 3.3 | ns | | | t _{IC} | Array clock delay | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | | t _{EN} | Register enable time | | | 2.4 | | 3.0 | | 4.1 | | 4.9 | ns | | | t _{GLOB} | Global control delay | | | 1.0 | | 1.2 | | 1.7 | | 2.0 | ns | | | t _{PRE} | Register preset time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | | t _{CLR} | Register clear time | | | 3.1 | | 3.9 | | 5.2 | | 6.2 | ns | | | t _{PIA} | PIA delay | (2) | | 0.9 | | 1.1 | | 1.5 | | 1.8 | ns | | | t_{LPA} | Low-power adder | (6) | | 11.0 | | 10.0 | | 10.0 | | 10.0 | ns | | | Table 29. EPM7256A External Timing Parameters Note (1) | | | | | | | | | | | | |--|--|-------------------|-------------|-----|-------|-----|------|------|------|------|-----| | Symbol | Parameter | Conditions | Speed Grade | | | | | | | | | | | | | -6 | | -7 | | -10 | | -12 | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non-registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{PD2} | I/O input to non-
registered output | C1 = 35 pF
(2) | | 6.0 | | 7.5 | | 10.0 | | 12.0 | ns | | t _{SU} | Global clock setup time | (2) | 3.7 | | 4.6 | | 6.2 | | 7.4 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FSU} | Global clock setup time of fast input | | 2.5 | | 3.0 | | 3.0 | | 3.0 | | ns | | t _{FH} | Global clock hold time of fast input | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.3 | 1.0 | 4.2 | 1.0 | 5.5 | 1.0 | 6.6 | ns | | t _{CH} | Global clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 8.0 | | 1.0 | | 1.4 | | 1.6 | | ns | | t _{AH} | Array clock hold time | (2) | 1.9 | | 2.7 | | 4.0 | | 5.1 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF
(2) | 1.0 | 6.2 | 1.0 | 7.8 | 1.0 | 10.3 | 1.0 | 12.4 | ns | | t _{ACH} | Array clock high time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 3.0 | | 4.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 6.4 | | 8.0 | | 10.7 | | 12.8 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 156.3 | | 125.0 | | 93.5 | | 78.1 | | MHz | Figure 13 shows the typical supply current versus frequency for MAX 7000A devices. Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2) ### EPM7128A & EPM7128AE Figure 15. 49-Pin Ultra FineLine BGA Package Pin-Out Diagram Package outlines not drawn to scale. Figure 16. 84-Pin PLCC Package Pin-Out Diagram Package outline not drawn to scale. Figure 21. 208-Pin PQFP Package Pin-Out Diagram Package outline not drawn to scale.