

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	120
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7256aetc144-5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MAX 7000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high-density integration of SSI, MSI, and LSI logic functions. It easily integrates multiple devices including PALs, GALs, and 22V10s devices. MAX 7000A devices are available in a wide range of packages, including PLCC, BGA, FineLine BGA, Ultra FineLine BGA, PQFP, and TQFP packages. See Table 3 and Table 4.

Table 3. MAX 70	100A Maximum L	lser I/O Pins	Note (1)			
Device	44-Pin PLCC	44-Pin TQFP	49-Pin Ultra FineLine BGA (2)	84-Pin PLCC	100-Pin TQFP	100-Pin FineLine BGA (3)
EPM7032AE	36	36				
EPM7064AE	36	36	41		68	68
EPM7128A				68	84	84
EPM7128AE				68	84	84
EPM7256A					84	
EPM7256AE					84	84
EPM7512AE						

Table 4. MAX 7000.	Table 4. MAX 7000A Maximum User I/O PinsNote (1)									
Device	144-Pin TQFP	169-Pin Ultra FineLine BGA (2)	208-Pin PQFP	256-Pin BGA	256-Pin FineLine BGA (3)					
EPM7032AE										
EPM7064AE										
EPM7128A	100				100					
EPM7128AE	100	100			100					
EPM7256A	120		164		164					
EPM7256AE	120		164		164					
EPM7512AE	120		176	212	212					

Notes to tables:

- When the IEEE Std. 1149.1 (JTAG) interface is used for in-system programming or boundary-scan testing, four I/O pins become JTAG pins.
- (2) All Ultra FineLine BGA packages are footprint-compatible via the SameFrameTM feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.
- (3) All FineLine BGA packages are footprint-compatible via the SameFrame feature. Therefore, designers can design a board to support a variety of devices, providing a flexible migration path across densities and pin counts. Device migration is fully supported by Altera development tools. See "SameFrame Pin-Outs" on page 15 for more details.

MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

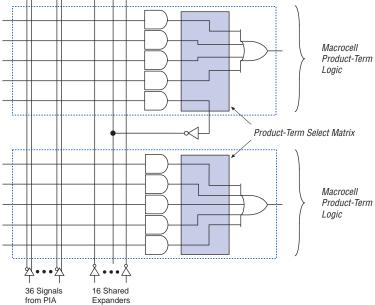
MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms, providing up to 32 product terms per macrocell.

MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems.

MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Expander Product Terms


Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Shareable expanders can be shared by any or all macrocells in an LAB.

Figure 3. MAX 7000A Shareable Expanders

For more information on using the Jam STAPL language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor) and *Application Note 122* (Using Jam STAPL for ISP & ICR via an Embedded Processor).

ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The instruction register length of MAX 7000A devices is 10 bits. The user electronic signature (UES) register length in MAX 7000A devices is 16 bits. The MAX 7000AE USERCODE register length is 32 bits. Tables 9 and 10 show the boundary-scan register length and device IDCODE information for MAX 7000A devices.

Table 9. MAX 7000A Boundary-Scan Register Length						
Device	Boundary-Scan Register Length					
EPM7032AE	96					
EPM7064AE	192					
EPM7128A	288					
EPM7128AE	288					
EPM7256A	480					
EPM7256AE	480					
EPM7512AE	624					

Table 10. 32	Table 10. 32-Bit MAX 7000A Device IDCODE Note (1)									
Device		IDCODE (32 Bits)								
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)						
EPM7032AE	0001	0111 0000 0011 0010	00001101110	1						
EPM7064AE	0001	0111 0000 0110 0100	00001101110	1						
EPM7128A	0000	0111 0001 0010 1000	00001101110	1						
EPM7128AE	0001	0111 0001 0010 1000	00001101110	1						
EPM7256A	0000	0111 0010 0101 0110	00001101110	1						
EPM7256AE	0001	0111 0010 0101 0110	00001101110	1						
EPM7512AE	0001	0111 0101 0001 0010	00001101110	1						

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) for more information on JTAG BST.

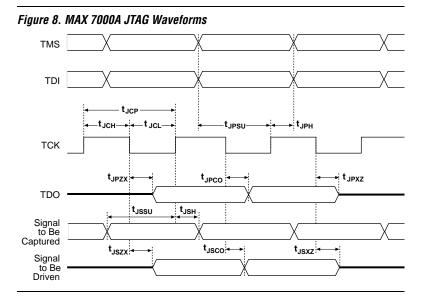


Figure 8 shows timing information for the JTAG signals.

Table 11 shows the JTAG timing parameters and values for MAX 7000A devices.

Table 1	1. JTAG Timing Parameters & Values for MAX 70	00A De	vices No	ote (1)
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Note:

⁽¹⁾ Timing parameters shown in this table apply for all specified VCCIO levels.

Programmable Speed/Power Control

MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000A device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

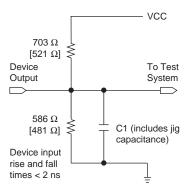
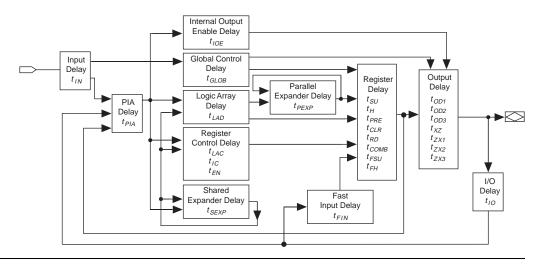

The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a slightly greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals.

Table 12 describes the MAX 7000A MultiVolt I/O support.

Table 12. MAX 7000A MultiVolt I/O Support											
V _{CCIO} Voltage Input Signal (V) Output Signal (V)											
	2.5 3.3 5.0 2.5 3.3 5.0										
2.5	✓	✓	✓	✓							
3.3	3.3 🗸 🗸 🗸										

Figure 9. MAX 7000A AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs.



Operating Conditions

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices.

Table 1	Table 13. MAX 7000A Device Absolute Maximum Ratings Note (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V						
VI	DC input voltage		-2.0	5.75	V						
I _{OUT}	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	°C						
T _A	Ambient temperature	Under bias	-65	135	°C						
TJ	Junction temperature	BGA, FineLine BGA, PQFP, and TQFP packages, under bias		135	°C						

Figure 11. MAX 7000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters.

See Application Note 94 (Understanding MAX 7000 Timing) for more information.

Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information.

Symbol	Parameter	Conditions	Speed Grade						Unit
			-4		-7		-10		1
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-7 -10				
			Min	Max	Min	Max	Min	Max	
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t_{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns
t_{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns
t_{LPA}	Low-power adder	(6)		2.5		4.0		5.0	ns

Table 20	Table 20. EPM7064AE Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade						Unit	
			-	-4 -7 -10						
			Min	Max	Min	Max	Min	Max		
t _{EN}	Register enable time			0.6		1.0		1.2	ns	
t_{GLOB}	Global control delay			1.0		1.5		2.2	ns	
t _{PRE}	Register preset time			1.3		2.1		2.9	ns	
t _{CLR}	Register clear time			1.3		2.1		2.9	ns	
t_{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns	
t_{LPA}	Low-power adder	(6)		3.5		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-:	-5		-7 -		10	
		·	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{ACNT}	Minimum array clock period	(2)		5.2		7.7		10.2	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

Symbol	Parameter	Conditions	Speed Grade							
			-5		-7		-10			
			Min	Max	Min	Max	Min	Max	1	
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns	
t_{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns	
t _{FIN}	Fast input delay			2.5		3.0		3.4	ns	
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns	
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns	
t_{LAD}	Logic array delay			1.6		2.4		3.1	ns	
t _{LAC}	Logic control array delay			0.7		1.0		1.3	ns	
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns	
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.2		1.6	ns	
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		1.3		1.7		2.1	ns	
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.2		6.6	ns	
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns	
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		4.5		4.5		5.5	ns	
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns	
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns	
t_{SU}	Register setup time		1.4		2.1		2.9		ns	
t_H	Register hold time		0.6		1.0		1.3		ns	
t _{FSU}	Register setup time of fast input		1.1		1.6		1.6		ns	
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns	
t_{RD}	Register delay			0.8		1.2		1.6	ns	
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns	
t_{IC}	Array clock delay			1.2		1.7		2.2	ns	

Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Max	Min	Max	
t_{RD}	Register delay			1.7		2.1		2.8		3.3	ns
t _{COMB}	Combinatorial delay			1.7		2.1		2.8		3.3	ns
t _{IC}	Array clock delay			2.4		3.0		4.1		4.9	ns
t _{EN}	Register enable time			2.4		3.0		4.1		4.9	ns
t_{GLOB}	Global control delay			1.0		1.2		1.7		2.0	ns
t_{PRE}	Register preset time			3.1		3.9		5.2		6.2	ns
t _{CLR}	Register clear time			3.1		3.9		5.2		6.2	ns
t_{PIA}	PIA delay	(2)		0.9		1.1		1.5		1.8	ns
t_{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns

Table 29. EPM7256A External Timing Parameters Note (1)												
Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-12		1	
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns	
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns	
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns	
t _{ASU}	Array clock setup time	(2)	0.8		1.0		1.4		1.6		ns	
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns	
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz	
t _{ACNT}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz	

Symbol	Parameter	Conditions	Speed Grade								
			-6		-7		-10		-12		
			Min	Max	Min	Max	Min	Max	Min	Max	
t_{COMB}	Combinatorial delay			1.6		2.0		2.7		3.2	ns
t_{IC}	Array clock delay			2.7		3.4		4.5		5.4	ns
t _{EN}	Register enable time			2.5		3.1		4.2		5.0	ns
t _{GLOB}	Global control delay			1.1		1.4		1.8		2.2	ns
t _{PRE}	Register preset time			2.3		2.9		3.8		4.6	ns
t _{CLR}	Register clear time			2.3		2.9		3.8		4.6	ns
t_{PIA}	PIA delay	(2)		1.3		1.6		2.1		2.6	ns
t_{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns

Notes to tables:

- (1) These values are specified under the recommended operating conditions shown in Table 14 on page 28. See Figure 12 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) This parameter is measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.
- (5) Operating conditions: $V_{CCIO} = 2.5 \pm 0.2 \text{ V}$ for commercial and industrial use.
- (6) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in low-power mode.

Power Consumption

Supply power (P) versus frequency (f_{MAX} , in MHz) for MAX 7000A devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation:

$$I_{CCINT} =$$

$$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{\boldsymbol{MAX}} \times \boldsymbol{tog_{LC}})$$

Figure 17. 100-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

Figure 18. 100-Pin FineLine BGA Package Pin-Out Diagram

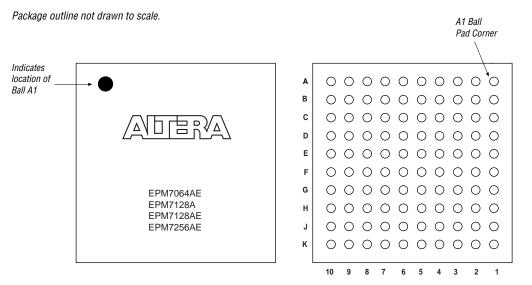


Figure 19. 144-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

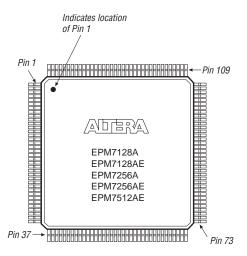


Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

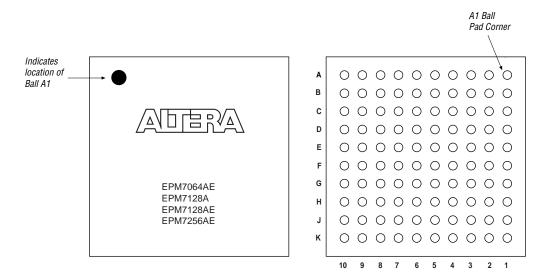
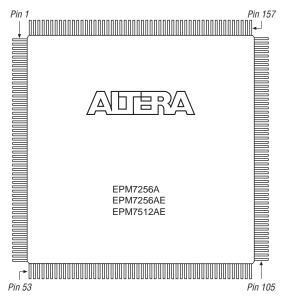



Figure 21. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

