

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	12 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	212
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm7512aefc256-12n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MAX 7000A devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programmed and erased up to 100 times.

MAX 7000A devices contain from 32 to 512 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms, providing up to 32 product terms per macrocell.

MAX 7000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 7000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5-V, 3.3-V, and 5.0-V tolerant, allowing MAX 7000A devices to be used in mixed-voltage systems.

MAX 7000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The software runs on Windows-based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

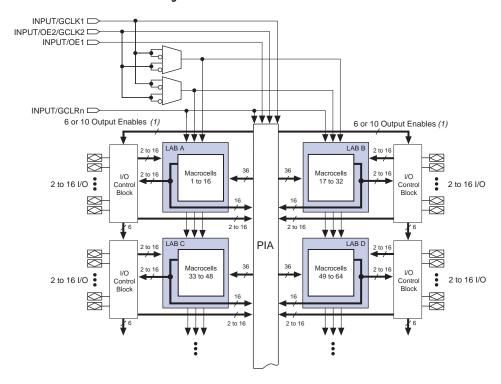


Figure 1. MAX 7000A Device Block Diagram

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables.

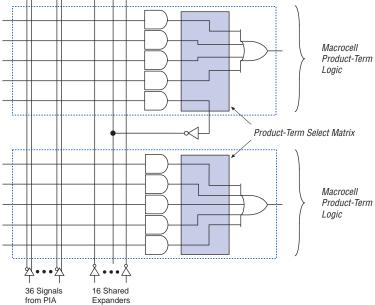
Logic Array Blocks

The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

Expander Product Terms


Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Shareable expanders can be shared by any or all macrocells in an LAB.

Figure 3. MAX 7000A Shareable Expanders

PIA

6 or 10 Global
Output Enable Signals (1)

OE Select Multiplexer

VCC

VCC

OE Select Multiplexer

VCC

Slew-Rate Control

Fast Input to
Macrocell
Register

To PIA

Figure 6. I/O Control Block of MAX 7000A Devices

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enable signals. EPM7512AE devices have 10 output enable signals.

When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-state buffer control is connected to V_{CC} , the output is enabled.

The MAX 7000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

Programmable Speed/Power Control

MAX 7000A devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 7000A device for either high-speed (i.e., with the Turbo BitTM option turned on) or low-power operation (i.e., with the Turbo Bit option turned off). As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters.

Output Configuration

MAX 7000A device outputs can be programmed to meet a variety of system-level requirements.

MultiVolt I/O Interface

The MAX 7000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 7000A devices to connect to systems with differing supply voltages. MAX 7000A devices in all packages can be set for 2.5-V, 3.3-V, or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3-V or 2.5-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a slightly greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5-V, 3.3-V, or 5.0-V signals.

Table 12 describes the MAX 7000A MultiVolt I/O support.

Table 12. MAX 70	Table 12. MAX 7000A MultiVolt I/O Support											
V _{CCIO} Voltage	V _{CC10} Voltage Input Signal (V) Output Signal (V)											
	2.5	3.3	5.0	2.5	3.3	5.0						
2.5	✓	✓	✓	✓								
3.3	✓	✓	✓		✓	✓						

Power Sequencing & Hot-Socketing

Because MAX 7000A devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The V_{CCIO} and V_{CCINT} power planes can be powered in any order.

Signals can be driven into MAX 7000AE devices before and during power-up (and power-down) without damaging the device. Additionally, MAX 7000AE devices do not drive out during power-up. Once operating conditions are reached, MAX 7000AE devices operate as specified by the user.

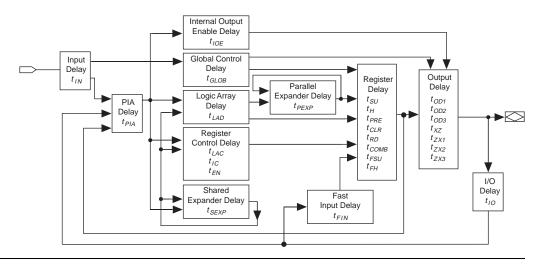
MAX 7000AE device I/O pins will not source or sink more than 300 μA of DC current during power-up. All pins can be driven up to 5.75 V during hot-socketing, except the OE1 and GLCRn pins. The OE1 and GLCRn pins can be driven up to 3.6 V during hot-socketing. After V_{CCINT} and V_{CCIO} reach the recommended operating conditions, these two pins are 5.0-V tolerant.

EPM7128A and EPM7256A devices do not support hot-socketing and may drive out during power-up.

Design Security

All MAX 7000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

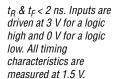

MAX 7000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 9. Test patterns can be used and then erased during early stages of the production flow.

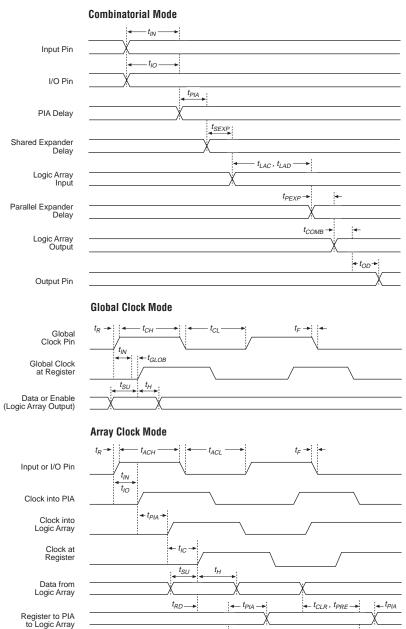
MAX 7000A Programmable Logic Device Data Sheet

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) For EPM7128A and EPM7256A devices only, V_{CC} must rise monotonically.
- (4) In MAX 7000AE devices, all pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (5) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.
- (6) These values are specified under the recommended operating conditions shown in Table 14 on page 28.
- (7) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low-level TTL or CMOS output current.
- (9) This value is specified for normal device operation. For MAX 7000AE devices, the maximum leakage current during power-up is ±300 μA. For EPM7128A and EPM7256A devices, leakage current during power-up is not specified.
- (10) For EPM7128A and EPM7256A devices, this pull-up exists while a device is programmed in-system.
- (11) For MAX 7000AE devices, this pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (12) Capacitance is measured at 25 °C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF.
- (13) The POR time for MAX 7000AE devices (except MAX 7128A and MAX 7256A devices) does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.

Figure 11. MAX 7000A Timing Model




The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 12 shows the timing relationship between internal and external delay parameters.

See Application Note 94 (Understanding MAX 7000 Timing) for more information.

Figure 12. MAX 7000A Switching Waveforms

 $-t_{OD}$

← t_{OD} -

Altera Corporation 33

Register Output to Pin

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7		10	
			Min	Max	Min	Max	Min	Max	
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t_{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns
t_{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns
t_{LPA}	Low-power adder	(6)		2.5		4.0		5.0	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
				4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	
t_{IC}	Array clock delay			1.2		1.6		2.1	ns
t_{EN}	Register enable time			0.8		1.0		1.3	ns
t _{GLOB}	Global control delay			1.0		1.5		2.0	ns
t _{PRE}	Register preset time			1.6		2.3		3.0	ns
t _{CLR}	Register clear time			1.6		2.3		3.0	ns
t_{PIA}	PIA delay	(2)		1.7		2.4		3.2	ns
t_{LPA}	Low-power adder	(6)		4.0		4.0		5.0	ns

Table 25	5. EPM7512AE External	Timing Paran	neters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-7	7		10	-1	12	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5		13.9	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	7		10		12	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		0.9		1.0	ns
t _{IO}	I/O input pad and buffer delay			0.7		0.9		1.0	ns
t _{FIN}	Fast input delay			3.1		3.6		4.1	ns
t _{SEXP}	Shared expander delay			2.7		3.5		4.4	ns
t _{PEXP}	Parallel expander delay			0.4		0.5		0.6	ns
t_{LAD}	Logic array delay			2.2		2.8		3.5	ns
t _{LAC}	Logic control array delay			1.0		1.3		1.7	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.0		1.5		1.7	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		1.5		2.0		2.2	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$	C1 = 35 pF		6.0		6.5		6.7	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF (5)		4.5		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		9.0		10.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		5.0	ns
t _{SU}	Register setup time		2.1		3.0		3.5		ns
t _H	Register hold time		0.6		8.0		1.0		ns
t _{FSU}	Register setup time of fast input		1.6		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns
t_{RD}	Register delay			1.3		1.7		2.1	ns
t _{COMB}	Combinatorial delay			0.6		0.8		1.0	ns

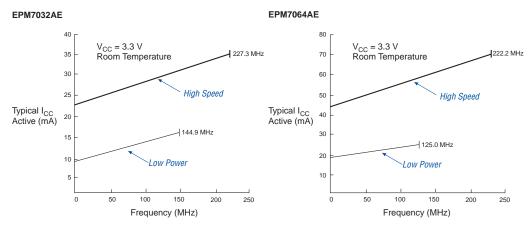

Symbol	Parameter	Conditions	Speed Grade									
			-1	6	-	7	-1	10	-1	12		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns	
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns	
t _{SU}	Global clock setup time	(2)	4.2		5.3		7.0		8.5		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns	
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns	
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	4.6	1.0	6.1	1.0	7.3	ns	
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns	
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns	
t _{ASU}	Array clock setup time	(2)	1.9		2.4		3.1		3.8		ns	
t _{AH}	Array clock hold time	(2)	1.5		2.2		3.3		4.3		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.0	1.0	7.5	1.0	10.0	1.0	12.0	ns	
t _{ACH}	Array clock high time		3.0		3.0		4.0		5.0		ns	
t _{ACL}	Array clock low time		3.0		3.0		4.0		5.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		5.0		ns	
t _{CNT}	Minimum global clock period	(2)		6.9		8.6		11.5		13.8	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (4)	144.9		116.3		87.0		72.5		MHz	
t _{ACNT}	Minimum array clock period	(2)		6.9		8.6		11.5		13.8	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	144.9		116.3		87		72.5		MHz	

Table 2	9. EPM7256A External Til	ning Parame	ters	Note	(1)						
Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6		7	-1	10		12	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	3.7		4.6		6.2		7.4		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.3	1.0	4.2	1.0	5.5	1.0	6.6	ns
t _{CH}	Global clock high time		3.0		3.0		4.0		4.0		ns
t _{CL}	Global clock low time		3.0		3.0		4.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	8.0		1.0		1.4		1.6		ns
t _{AH}	Array clock hold time	(2)	1.9		2.7		4.0		5.1		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.2	1.0	7.8	1.0	10.3	1.0	12.4	ns
t _{ACH}	Array clock high time		3.0		3.0		4.0		4.0		ns
t _{ACL}	Array clock low time		3.0		3.0		4.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz
t _{ACNT}	Minimum array clock period	(2)		6.4		8.0		10.7		12.8	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	156.3		125.0		93.5		78.1		MHz

Symbol	Parameter	Conditions				Speed	Grade				Unit
			-	6	-	7	-1	10	-1	12	
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t _{IO}	I/O input pad and buffer delay			0.3		0.4		0.5		0.6	ns
t_{FIN}	Fast input delay			2.4		3.0		3.4		3.8	ns
t _{SEXP}	Shared expander delay			2.8		3.5		4.7		5.6	ns
t _{PEXP}	Parallel expander delay			0.5		0.6		0.8		1.0	ns
t_{LAD}	Logic array delay			2.5		3.1		4.2		5.0	ns
t _{LAC}	Logic control array delay			2.5		3.1		4.2		5.0	ns
t _{IOE}	Internal output enable delay			0.2		0.3		0.4		0.5	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.3		0.4		0.5		0.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		0.8		0.9		1.0		1.1	ns
t _{OD3}	Output buffer and pad delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.3		5.4		5.5		5.6	ns
t _{ZX1}	Output buffer enable delay slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		4.0		4.0		5.0		5.0	ns
t _{ZX2}	Output buffer enable delay slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF (5)		4.5		4.5		5.5		5.5	ns
t _{ZX3}	Output buffer enable delay slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		5.0	ns
t _{SU}	Register setup time		1.0		1.3		1.7		2.0		ns
t _H	Register hold time		1.7		2.4		3.7		4.7		ns
t _{FSU}	Register setup time of fast input		1.2		1.4		1.4		1.4		ns
t _{FH}	Register hold time of fast input		1.3		1.6		1.6		1.6		ns
t_{RD}	Register delay			1.6		2.0		2.7		3.2	ns

Figure 13 shows the typical supply current versus frequency for MAX 7000A devices.

Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2)

EPM7128A & EPM7128AE

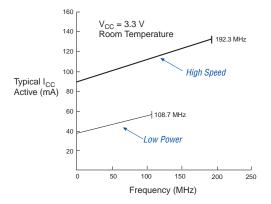
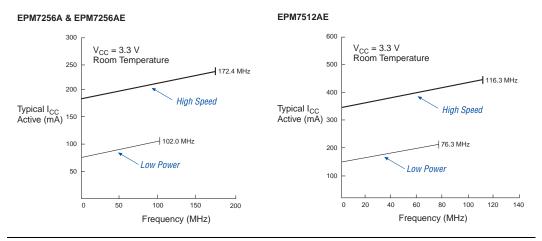



Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 14 through 23 show the package pin-out diagrams for MAX 7000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

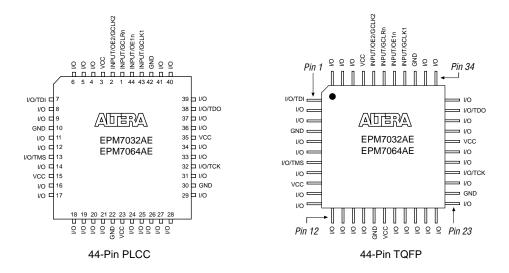


Figure 19. 144-Pin TQFP Package Pin-Out Diagram

Package outline not drawn to scale.

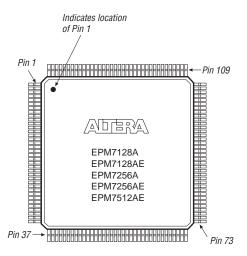
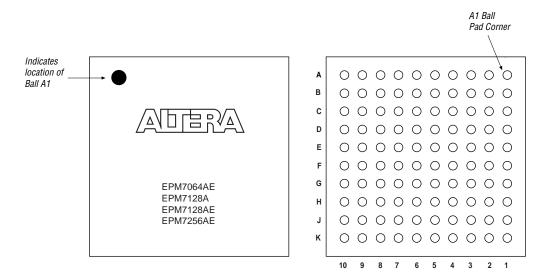



Figure 20. 169-Pin Ultra FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

