
E·XFL

Intel - EPM7512AEFC256-7N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	212
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7512aefc256-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlasterTM serial/universal serial bus (USB) communications cable, ByteBlasterMVTM parallel port download cable, and BitBlasterTM serial download cable, as well as programming hardware from third-party manufacturers and any JamTM STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

General Description

MAX 7000A (including MAX 7000AE) devices are high-density, highperformance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROMbased MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2*. See Table 2.

Table 2. MAX 7000A Speed Grades											
Device			Speed	Grade							
	-4	-5	-6	-7	-10	-12					
EPM7032AE	>			\checkmark	\checkmark						
EPM7064AE	>			\checkmark	\checkmark						
EPM7128A			\checkmark	~	~	~					
EPM7128AE		~		\checkmark	\checkmark						
EPM7256A			\checkmark	\checkmark	\checkmark	\checkmark					
EPM7256AE		~		~	~						
EPM7512AE				\checkmark	\checkmark	\checkmark					

Functional Description

The MAX 7000A architecture includes the following elements:

- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array
- I/O control blocks

The MAX 7000A architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 7000A devices.

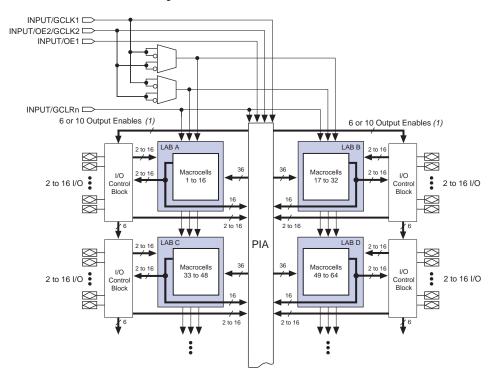
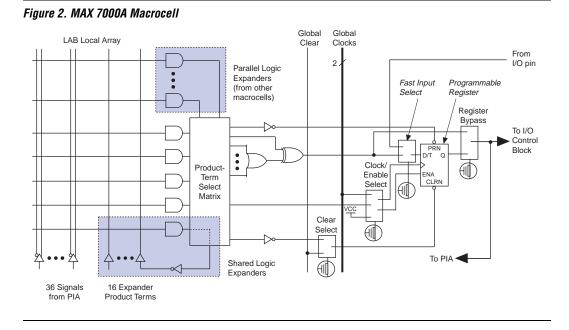


Figure 1. MAX 7000A Device Block Diagram

Note:

(1) EPM7032AE, EPM7064AE, EPM7128A, EPM7128AE, EPM7256A, and EPM7256AE devices have six output enables. EPM7512AE devices have 10 output enables.

Logic Array Blocks

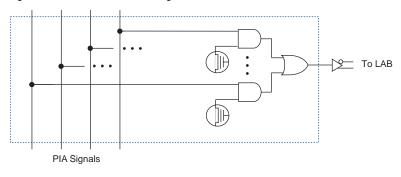

The MAX 7000A device architecture is based on the linking of high-performance LABs. LABs consist of 16-macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- **3**6 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions
- Direct input paths from I/O pins to the registers that are used for fast setup times

Macrocells

MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell.


Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

Figure 5. MAX 7000A PIA Routing

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 7000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V_{CC} . Figure 6 shows the I/O control block for MAX 7000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

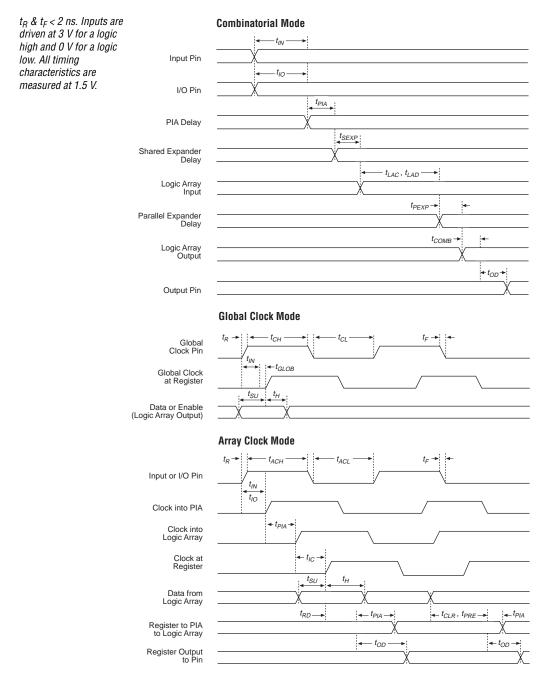
Programming a Single MAX 7000A Device

The time required to program a single MAX 7000A device in-system can be calculated from the following formula:

$t_{PROG} = t_{PPU}$	$LSE + \frac{Cycle_{PTCK}}{f_{TCK}}$
where: t_{PROC} t_{PPUL}	
Cycle f _{TCK}	 PTCK = Number of TCK cycles to program a device TCK frequency

The ISP times for a stand-alone verification of a single MAX 7000A device can be calculated from the following formula:

$t_{VER} = t_{VPULSE} + \frac{C_2}{2}$	^{jcle} VTCK ^f TCK
where: t_{VER} t_{VPULSE} $Cycle_{VTCK}$	= Verify time= Sum of the fixed times to verify the EEPROM cells= Number of TCK cycles to verify a device


The programming times described in Tables 5 through 7 are associated with the worst-case method using the enhanced ISP algorithm.

Device	Progra	mming	Stand-Alone Verification			
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}		
EPM7032AE	2.00	55,000	0.002	18,000		
EPM7064AE	2.00	105,000	0.002	35,000		
EPM7128AE	2.00	205,000	0.002	68,000		
EPM7256AE	2.00	447,000	0.002	149,000		
EPM7512AE	2.00	890,000	0.002	297,000		
EPM7128A (1)	5.11	832,000	0.03	528,000		
EPM7256A (1)	6.43	1,603,000	0.03	1,024,000		

Tables 6 and 7 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 6. MAX 7000A In-System Programming Times for Different Test Clock Frequencies											
Device				f	тск				Units		
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM7032AE	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	S		
EPM7064AE	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	s		
EPM7128AE	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	s		
EPM7256AE	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	s		
EPM7512AE	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	s		
EPM7128A (1)	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	S		
EPM7256A (1)	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S		

Figure 12. MAX 7000A Switching Waveforms

Tables 17 through 30 show EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, EPM7512AE, EPM7128A, and EPM7256A timing information.

Table 1	7. EPM7032AE External Timi	ng Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4	4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{acnt}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Table 20. EPM7064AE Internal Timing Parameters (Part 2 of 2) Note (1)										
Symbol	Parameter	Conditions	Speed Grade							
			-	-4 -7				-10		
			Min	Max	Min	Max	Min	Max		
t _{EN}	Register enable time			0.6		1.0		1.2	ns	
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns	
t _{PRE}	Register preset time			1.3		2.1		2.9	ns	
t _{CLR}	Register clear time			1.3		2.1		2.9	ns	
t _{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns	
t _{LPA}	Low-power adder	(6)		3.5		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
				5	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{cnt}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
fcnt	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{acnt}	Minimum array clock period	(2)		5.2		7.7		10.2	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

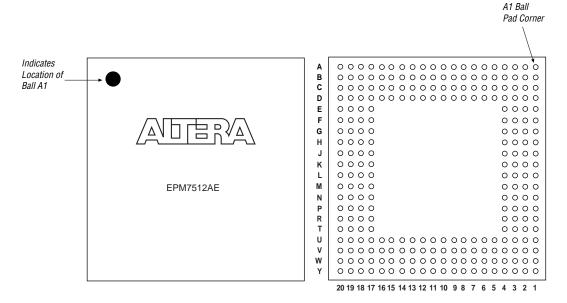
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns
t _{FIN}	Fast input delay			2.5		3.0		3.4	ns
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t _{LAD}	Logic array delay			1.6		2.4		3.1	ns
t _{LAC}	Logic control array delay			0.7		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.3		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.4		2.1		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{FSU}	Register setup time of fast input		1.1		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns
t _{RD}	Register delay			0.8		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.7		2.2	ns

Altera Corporation

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	7		10	-1	2	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz
t _{acnt}	Minimum array clock period	(2)		8.6		11.5		13.9	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz

Symbol	Parameter	Conditions	Speed Grade							
			-7		-	10	-12			
			Min	Max	Min	Max	Min	Max	1	
t _{IN}	Input pad and buffer delay			0.7		0.9		1.0	ns	
t _{IO}	I/O input pad and buffer delay			0.7		0.9		1.0	ns	
t _{FIN}	Fast input delay			3.1		3.6		4.1	ns	
t _{SEXP}	Shared expander delay			2.7		3.5		4.4	ns	
t _{PEXP}	Parallel expander delay			0.4		0.5		0.6	ns	
t _{LAD}	Logic array delay			2.2		2.8		3.5	ns	
t _{LAC}	Logic control array delay			1.0		1.3		1.7	ns	
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns	
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		1.0		1.5		1.7	ns	
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		1.5		2.0		2.2	ns	
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		6.0		6.5		6.7	ns	
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		5.0		5.0	ns	
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		5.5		5.5	ns	
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		10.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0		5.0	ns	
t _{SU}	Register setup time		2.1		3.0		3.5		ns	
t _H	Register hold time		0.6		0.8		1.0		ns	
t _{FSU}	Register setup time of fast input		1.6		1.6		1.6		ns	
t _{FH}	Register hold time of fast input		1.4		1.4		1.4		ns	
t _{RD}	Register delay			1.3		1.7		2.1	ns	
t _{COMB}	Combinatorial delay			0.6		0.8		1.0	ns	

Symbol	Parameter	Conditions		Speed Grade									
			-6		-7		-10		-12				
			Min	Max	Min	Max	Min	Мах	Min	Max	1		
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns		
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		6.0		7.5		10.0		12.0	ns		
t _{SU}	Global clock setup time	(2)	4.2		5.3		7.0		8.5		ns		
t _H	Global clock hold time	(2)	0.0		0.0		0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.7	1.0	4.6	1.0	6.1	1.0	7.3	ns		
t _{CH}	Global clock high time		3.0		3.0		4.0		5.0		ns		
t _{CL}	Global clock low time		3.0		3.0		4.0		5.0		ns		
t _{ASU}	Array clock setup time	(2)	1.9		2.4		3.1		3.8		ns		
t _{AH}	Array clock hold time	(2)	1.5		2.2		3.3		4.3		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	6.0	1.0	7.5	1.0	10.0	1.0	12.0	ns		
t _{ACH}	Array clock high time		3.0		3.0		4.0		5.0		ns		
t _{ACL}	Array clock low time		3.0		3.0		4.0		5.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		3.0		4.0		5.0		ns		
t _{CNT}	Minimum global clock period	(2)		6.9		8.6		11.5		13.8	ns		
f _{CNT}	Maximum internal global clock frequency	(2), (4)	144.9		116.3		87.0		72.5		MHz		
t _{acnt}	Minimum array clock period	(2)		6.9		8.6		11.5		13.8	ns		
f _{acnt}	Maximum internal array clock frequency	(2), (4)	144.9		116.3		87		72.5		MHz		


Symbol	Parameter	Conditions		Speed Grade								
			-6		-7		-10		-12			
			Min	Мах	Min	Мах	Min	Мах	Min	Max		
t _{RD}	Register delay			1.7		2.1		2.8		3.3	ns	
t _{COMB}	Combinatorial delay			1.7		2.1		2.8		3.3	ns	
t _{IC}	Array clock delay			2.4		3.0		4.1		4.9	ns	
t _{EN}	Register enable time			2.4		3.0		4.1		4.9	ns	
t _{GLOB}	Global control delay			1.0		1.2		1.7		2.0	ns	
t _{PRE}	Register preset time			3.1		3.9		5.2		6.2	ns	
t _{CLR}	Register clear time			3.1		3.9		5.2		6.2	ns	
t _{PIA}	PIA delay	(2)		0.9		1.1		1.5		1.8	ns	
t _{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns	

Symbol	Parameter	Conditions	Speed Grade									
			-6		-7		-10		-12			
			Min	Max	Min	Max	Min	Max	Min	Max	1	
t _{IN}	Input pad and buffer delay			0.3		0.4		0.5		0.6	ns	
t _{IO}	I/O input pad and buffer delay			0.3		0.4		0.5		0.6	ns	
t _{FIN}	Fast input delay			2.4		3.0		3.4		3.8	ns	
t _{SEXP}	Shared expander delay			2.8		3.5		4.7		5.6	ns	
t _{PEXP}	Parallel expander delay			0.5		0.6		0.8		1.0	ns	
t _{LAD}	Logic array delay			2.5		3.1		4.2		5.0	ns	
t _{LAC}	Logic control array delay			2.5		3.1		4.2		5.0	ns	
t _{IOE}	Internal output enable delay			0.2		0.3		0.4		0.5	ns	
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.3		0.4		0.5		0.6	ns	
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		0.8		0.9		1.0		1.1	ns	
t _{OD3}	Output buffer and pad delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		5.3		5.4		5.5		5.6	ns	
t _{ZX1}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0		5.0	ns	
t _{ZX2}	Output buffer enable delay slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF (5)		4.5		4.5		5.5		5.5	ns	
t _{ZX3}	Output buffer enable delay slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0		5.0	ns	
t _{SU}	Register setup time		1.0		1.3		1.7		2.0		ns	
t _H	Register hold time		1.7		2.4		3.7		4.7		ns	
t _{FSU}	Register setup time of fast input		1.2		1.4		1.4		1.4		ns	
t _{FH}	Register hold time of fast input		1.3		1.6		1.6		1.6		ns	
t _{RD}	Register delay			1.6		2.0		2.7		3.2	ns	

Altera Corporation

Figure 22. 256-Pin BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Version 4.3

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.3:

- Added extended temperature devices to document
- Updated Table 14.

Version 4.2

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.2:

- Removed *Note* (1) from Table 2.
- Removed *Note* (4) from Tables 3 and 4.

Version 4.1

The following changes were made in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.1:

- Updated leakage current information in Table 15.
- Updated Note (9) of Table 15.
- Updated *Note* (1) of Tables 17 through 30.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera valtera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. **Ex. EN ISO 9001**

101 111 100 000.

Altera Corporation