

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

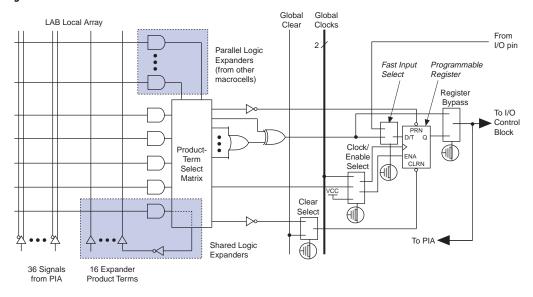
Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	120
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm7512aetc144-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), MasterBlaster™ serial/universal serial bus (USB) communications cable, ByteBlasterMV™ parallel port download cable, and BitBlaster™ serial download cable, as well as programming hardware from third-party manufacturers and any Jam™ STAPL File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format File- (.svf) capable in-circuit tester

General Description


MAX 7000A (including MAX 7000AE) devices are high-density, high-performance devices based on Altera's second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX 7000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 7000A devices in the -4, -5, -6, -7, and some -10 speed grades are compatible with the timing requirements for 33 MHz operation of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

Device			Speed	Grade		
	-4	-5	-6	-7	-10	-12
EPM7032AE	✓			✓	✓	
EPM7064AE	✓			✓	✓	
EPM7128A			✓	✓	✓	✓
EPM7128AE		✓		✓	✓	
EPM7256A			✓	✓	✓	✓
EPM7256AE		✓		✓	✓	
EPM7512AE				✓	✓	✓

Macrocells

MAX 7000A macrocells can be individually configured for either sequential or combinatorial logic operation. The macrocells consist of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Figure 2 shows a MAX 7000A macrocell.

Figure 2. MAX 7000A Macrocell

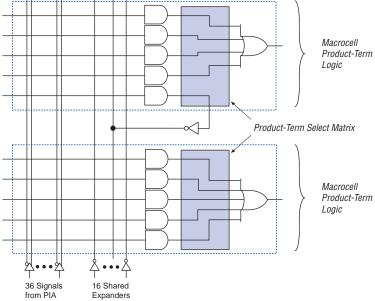
Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

Expander Product Terms


Although most logic functions can be implemented with the five product terms available in each macrocell, more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 7000A architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t_{SEXP}) is incurred when shareable expanders are used. Figure 3 shows how shareable expanders can feed multiple macrocells.

Shareable expanders can be shared by any or all macrocells in an LAB.

Figure 3. MAX 7000A Shareable Expanders

In-System Programmability

MAX 7000A devices can be programmed in-system via an industry-standard 4-pin IEEE Std. 1149.1 (JTAG) interface. ISP offers quick, efficient iterations during design development and debugging cycles. The MAX 7000A architecture internally generates the high programming voltages required to program EEPROM cells, allowing in-system programming with only a single 3.3-V power supply. During in-system programming, the I/O pins are tri-stated and weakly pulled-up to eliminate board conflicts. The pull-up value is nominally 50 k Ω .

MAX 7000AE devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that provides safe operation when in-system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed. This feature is only available in EPM7032AE, EPM7064AE, EPM7128AE, EPM7256AE, and EPM7512AE devices.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a PCB with standard pick-and-place equipment before they are programmed. MAX 7000A devices can be programmed by downloading the information via in-circuit testers, embedded processors, the Altera MasterBlaster serial/USB communications cable, ByteBlasterMV parallel port download cable, and BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high-pin-count packages (e.g., QFP packages) due to device handling. MAX 7000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. A constant algorithm uses a predefined (non-adaptive) programming sequence that does not take advantage of adaptive algorithm programming time improvements. Some in-circuit testers cannot program using an adaptive algorithm. Therefore, a constant algorithm must be used. MAX 7000AE devices can be programmed with either an adaptive or constant (non-adaptive) algorithm. EPM7128A and EPM7256A device can only be programmed with an adaptive algorithm; users programming these two devices on platforms that cannot use an adaptive algorithm should use EPM7128AE and EPM7256AE devices.

The Jam Standard Test and Programming Language (STAPL), JEDEC standard JESD 71, can be used to program MAX 7000A devices with incircuit testers, PCs, or embedded processors.

For more information on using the Jam STAPL language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor) and *Application Note 122* (Using Jam STAPL for ISP & ICR via an Embedded Processor).

ISP circuitry in MAX 7000AE devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

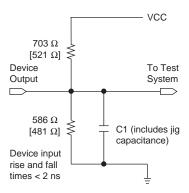
Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 7000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

The programming times described in Tables 5 through 7 are associated with the worst-case method using the enhanced ISP algorithm.


Device	Progra	mming	Stand-Alone Verificat			
	t _{PPULSE} (s)	Cycle _{PTCK}	vcle _{PTCK} t _{VPULSE} (s)			
EPM7032AE	2.00	55,000	0.002	18,000		
EPM7064AE	2.00	105,000	0.002	35,000		
EPM7128AE	2.00	205,000	0.002	68,000		
EPM7256AE	2.00	447,000	0.002	149,000		
EPM7512AE	2.00	890,000	0.002	297,000		
EPM7128A (1)	5.11	832,000	0.03	528,000		
EPM7256A (1)	6.43	1,603,000	0.03	1,024,000		

Tables 6 and 7 show the in-system programming and stand alone verification times for several common test clock frequencies.

Device				1	TCK				Units
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz	
EPM7032AE	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	s
EPM7064AE	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	S
EPM7128AE	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	s
EPM7256AE	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	S
EPM7512AE	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	S
EPM7128A (1)	5.19	5.27	5.52	5.94	6.77	9.27	13.43	21.75	s
EPM7256A (1)	6.59	6.75	7.23	8.03	9.64	14.45	22.46	38.49	S

Figure 9. MAX 7000A AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V outputs.

Operating Conditions

Tables 13 through 16 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 7000A devices.

Table 1	3. MAX 7000A Device Absolu	te Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _A	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	BGA, FineLine BGA, PQFP, and TQFP packages, under bias		135	°C

Table 1	4. MAX 7000A Device Recomm	ended Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (13)	3.0	3.6	V
V _{CCIO}	Supply voltage for output drivers, 3.3-V operation	(3)	3.0	3.6	V
	Supply voltage for output drivers, 2.5-V operation	(3)	2.3	2.7	V
V _{CCISP}	Supply voltage during in- system programming		3.0	3.6	V
V _I	Input voltage	(4)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	Commercial range	0	70	° C
		Industrial range (5)	-40	85	° C
TJ	Junction temperature	Commercial range	0	90	° C
		Industrial range (5)	-40	105	° C
		Extended range (5)	-40	130	° C
t _R	Input rise time			40	ns
t _F	Input fall time		_	40	ns

Figure 10 shows the typical output drive characteristics of MAX 7000A devices.

3.3 V MAX 7000AE Devices 2.5 V MAX 7000AE Devices 150 150 100 100 V_{CCINT} = 3.3 V Typical I_O Typical I_O $V_{CCINT} = 3.3 V$ Output Output $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 \text{ V}$ Current (mA) Current (mA) Temperature = 25 °C Temperature = 25 °C 50 50 $I_{\cap H}$ 0 VO Output Voltage (V) Vo Output Voltage (V) EPM7128A & EPM7256A Devices 3.3 V 2.5 V EPM7128A & EPM7256A Devices 120 120 I_{OL} I_{OL}

Typical I_O

Output

Temperature = 25°C Current (mA)

V_{CCINT} = 3.3 V

 $V_{CCIO} = 3.3 V$

VO Output Voltage (V)

Figure 10. Output Drive Characteristics of MAX 7000A Devices

Timing Model

Typical I_O

Current (mA)

Output

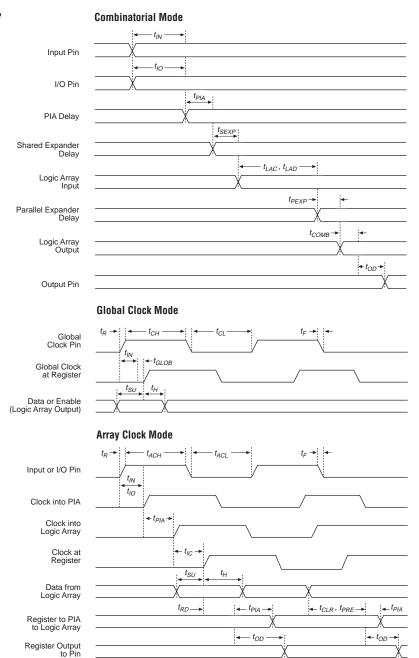
MAX 7000A device timing can be analyzed with the Altera software, a variety of popular industry-standard EDA simulators and timing analyzers, or with the timing model shown in Figure 11. MAX 7000A devices have predictable internal delays that enable the designer to determine the worst-case timing of any design. The software provides timing simulation, point-to-point delay prediction, and detailed timing analysis for device-wide performance evaluation.

80

40

V_{CCINT} = 3.3 V

 $V_{CCIO} = 2.5 V$


 I_{OH}

Vo Output Voltage (V)

Temperature = 25 °C

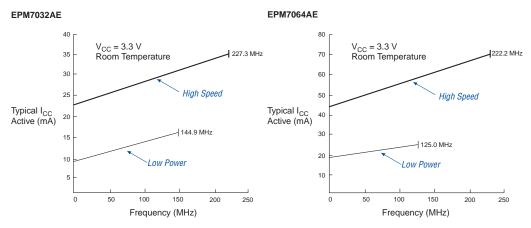
Figure 12. MAX 7000A Switching Waveforms

 t_R & t_F < 2 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V.

Symbol	Parameter	Conditions	Speed Grade							
			-	-4		7		10		
			Min	Max	Min	Max	Min	Max		
t _{IC}	Array clock delay			1.2		2.0		2.5	ns	
t _{EN}	Register enable time			0.6		1.0		1.2	ns	
t_{GLOB}	Global control delay			0.8		1.3		1.9	ns	
t _{PRE}	Register preset time			1.2		1.9		2.6	ns	
t _{CLR}	Register clear time			1.2		1.9		2.6	ns	
t_{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns	
t_{LPA}	Low-power adder	(6)		2.5		4.0		5.0	ns	

Symbol	Parameter	Conditions			Speed	Grade			Unit
		·	-!	5	-	7	-1	10	
			Min	Max	Min	Max	Min	Max	Ē
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		5.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.9		5.2		6.9		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		2.5		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.5	1.0	4.8	1.0	6.4	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	2.0		2.7		3.6		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	5.4	1.0	7.3	1.0	9.7	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.8		7.9		10.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	172.4		126.6		95.2		MHz
t _{ACNT}	Minimum array clock period	(2)		5.8		7.9		10.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	172.4		126.6		95.2		MHz

Symbol	Parameter	Conditions	Speed Grade							
			-	-5		7		10		
			Min	Max	Min	Max	Min	Max		
t_{IC}	Array clock delay			1.2		1.6		2.1	ns	
t _{EN}	Register enable time			8.0		1.0		1.3	ns	
t _{GLOB}	Global control delay			1.0		1.5		2.0	ns	
t _{PRE}	Register preset time			1.6		2.3		3.0	ns	
t _{CLR}	Register clear time			1.6		2.3		3.0	ns	
t_{PIA}	PIA delay	(2)		1.7		2.4		3.2	ns	
t_{LPA}	Low-power adder	(6)		4.0		4.0		5.0	ns	


Table 25	5. EPM7512AE External	Timing Paran	neters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-7	7		10	-1	12	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF (2)		7.5		10.0		12.0	ns
t _{SU}	Global clock setup time	(2)	5.6		7.6		9.1		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{FSU}	Global clock setup time of fast input		3.0		3.0		3.0		ns
t _{FH}	Global clock hold time of fast input		0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	1.0	7.5	ns
t _{CH}	Global clock high time		3.0		4.0		5.0		ns
t _{CL}	Global clock low time		3.0		4.0		5.0		ns
t _{ASU}	Array clock setup time	(2)	2.5		3.5		4.1		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	1.0	12.5	ns
t _{ACH}	Array clock high time		3.0		4.0		5.0		ns
t _{ACL}	Array clock low time		3.0		4.0		5.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		5.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5		13.9	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		71.9		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5		13.9	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		71.9		MHz

Symbol	Parameter	Conditions	Speed Grade							
			-	-7		10	-	12		
			Min	Max	Min	Max	Min	Max	1	
t _{IC}	Array clock delay			1.8		2.3		2.9	ns	
t _{EN}	Register enable time			1.0		1.3		1.7	ns	
t_{GLOB}	Global control delay			1.7		2.2		2.7	ns	
t _{PRE}	Register preset time			1.0		1.4		1.7	ns	
t _{CLR}	Register clear time			1.0		1.4		1.7	ns	
t_{PIA}	PIA delay	(2)		3.0		4.0		4.8	ns	
t_{LPA}	Low-power adder	(6)		4.5		5.0		5.0	ns	

Symbol	Parameter	Conditions	Speed Grade									
			-	6	-	7	-1	10	-1	12		
			Min	Max	Min	Max	Min	Max	Min	Max		
t _{RD}	Register delay			1.7		2.1		2.8		3.3	ns	
t _{COMB}	Combinatorial delay			1.7		2.1		2.8		3.3	ns	
t _{IC}	Array clock delay			2.4		3.0		4.1		4.9	ns	
t _{EN}	Register enable time			2.4		3.0		4.1		4.9	ns	
t _{GLOB}	Global control delay			1.0		1.2		1.7		2.0	ns	
t _{PRE}	Register preset time			3.1		3.9		5.2		6.2	ns	
t _{CLR}	Register clear time			3.1		3.9		5.2		6.2	ns	
t _{PIA}	PIA delay	(2)		0.9		1.1		1.5		1.8	ns	
t_{LPA}	Low-power adder	(6)		11.0		10.0		10.0		10.0	ns	

Figure 13 shows the typical supply current versus frequency for MAX 7000A devices.

Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 1 of 2)

EPM7128A & EPM7128AE

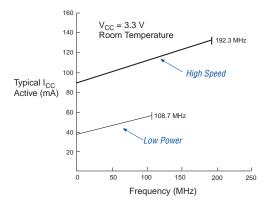
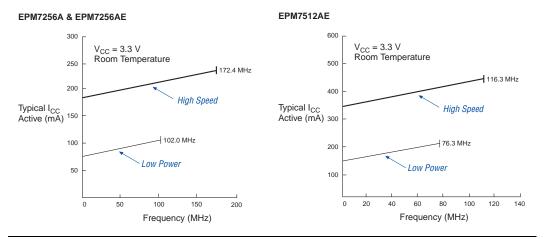



Figure 13. I_{CC} vs. Frequency for MAX 7000A Devices (Part 2 of 2)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information.

Figures 14 through 23 show the package pin-out diagrams for MAX 7000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

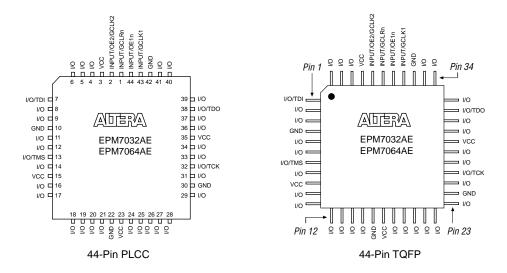
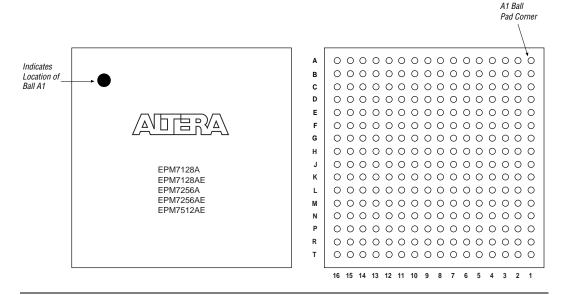



Figure 23. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 7000A Programmable Logic Device Data Sheet* version 4.5 supersedes information published in previous versions.

Version 4.5

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.5:

Updated text in the "Power Sequencing & Hot-Socketing" section.

Version 4.4

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.4:

- Added Tables 5 through 7.
- Added "Programming Sequence" on page 17 and "Programming Times" on page 18.

Version 4.3

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.3:

- Added extended temperature devices to document
- Updated Table 14.

Version 4.2

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.2:

- Removed *Note* (1) from Table 2.
- Removed *Note* (4) from Tables 3 and 4.

Version 4.1

The following changes were made in the MAX 7000A Programmable Logic Device Data Sheet version 4.1:

- Updated leakage current information in Table 15.
- Updated Note (9) of Table 15.
- Updated *Note* (1) of Tables 17 through 30.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Literature Services: lit_reg@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.

Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

L.S. EN ISO 9001