

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321bj7tae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Desc	ription
2	Pack	age pinout and pin description
	2.1	Package pinout
	2.2	Pin description
3	Regi	ster and memory map
4	Flash	h program memory
	4.1	Introduction
	4.2	Main features
	4.3	Structure
		4.3.1 Readout protection
	4.4	ICC interface
	4.5	ICP (in-circuit programming)
	4.6	IAP (in-application programming) 33
	4.7	Related documentation
	4.8	Flash control/status register (FCSR)
	_	
5	Cent	ral processing unit (CPU) 34
	5.1	Introduction
	5.2	Main features
~~O`	5.3	CPU registers
10-		5.3.1 Accumulator (A)
		5.3.2 Index registers (X and Y) 35
		5.3.3 Program counter (PC)
		5.3.4 Condition code (CC) register
		5.3.5 Stack pointer (SP) register
6	Supp	oly, reset and clock management
	6.1	Introduction
	6.2	Main features
	6.3	Phase locked loop

57

2 Package pinout and pin description

2.1 Package pinout

2.2 Pin description

In the device pin description table, the RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state.

Refer to Section 9: I/O ports for more details on the software configuration of the I/O ports.

	Pin No.				Le	evel			I	Port			Main			
	LQFP64 LQFP44		Pin name	ype	rt	out		Inp	out		Out	put	function (after	Alternate function		
					dul	Outp	float	ndm	int	ana	OD	РР	reset)			
	1	- (1)(2)	PE4(HS)	I/O	CT	HS	x	х			х	х	Port E4	(5)		
	2	_ (1)(2)	PE5(HS)	I/O	CT	HS	x	х			х	х	Port E5	dul		
	3	_ (1)(2)	PE6(HS)	I/O	CT	HS	x	х			х	х	Port E6			
	4	_ (1)(2)	PE7(HS)	I/O	CT	HS	х	х			х	x	Port E7			
	5	2	PB0/PWM3	I/O	C_T		Х	е	i2	U	X	Х	Port B0	PWM Output 3		
	6	3	PB1/PWM2	I/O	C_T		Х	е	i2)~	х	Х	Port B1	PWM Output 2		
	7	4	PB2/PWM1	I/O	C_{T}		X	е	i2	-	Х	Х	Port B2	PWM Output 1		
	8	5	PB3/PWM0	I/O	C_{T}	6	х	X ei2			Х	Х	Port B3	PWM Output 0		
	9	6	PB4(HS)/ARTCLK	I/O	CT	HS	x	e	i3		х	х	Port B4	PWM-ART External Clock		
	10	_ (1)(2)	PB5 / ARTIC1	1/0	CT		х	e	i3		х	х	Port B5	PWM-ART Input Capture 1		
	11	_ (1)(2)	PB6 / ARTIC2	I/O	CT		х	e	i3		х	х	Port B6 PWM-ART Input Capture 2			
	12	(1)(2)	PB7	I/O	CT		x		ei3		х	х	Port B7			
	13	7	PD0/AIN0	I/O	C_T		Х	Х		Х	Х	Х	Port D0	ADC Analog Input 0		
	14	8	PD1/AIN1	I/O	C_T		Х	Х		Х	Х	Х	Port D1	ADC Analog Input 1		
	15	9	PD2/AIN2	I/O	C_T		Х	Х		Х	Х	Х	Port D2	ADC Analog Input 2		
	16	10	PD3/AIN3	I/O	C_T		Х	Х		Х	Х	Х	Port D3	ADC Analog Input 3		
	17	11	PD4/AIN4	I/O	C_T		Х	Х		Х	Х	Х	Port D4	ADC Analog Input 4		
	18	12	PD5/AIN5	I/O	C_T		Х	Х		Х	Х	Х	Port D5	ADC Analog Input 5		
	19	(1)(2)	PD6/AIN6	I/O	CT		x	х		х	х	Х	Port D6	ADC Analog Input 6		
	20	- (2)(1)	PD7/AIN7	I/O	CT		x	х		х	х	х	Port D7	ADC Analog Input 7		
	21	13	V _{AREF} ⁽³⁾	Ι									Analog R	eference Voltage for ADC		

Table 2.Device pin description

Pin	No.			Le	evel	Port						Main		
P64	P44	Pin name	Fype	rt	out		Inp	out		Out	tput	function (after	Alternate function	
ГĞFI	LQFI			dul	Outl	float	ndw	int	ana	ОD	ЬΡ	reset)		
62	1	PE1/RDI	I/O	C_T		Х	Х			Х	Х	Port E1	SCI Receive Data In	
63	_(1)	PE2	I/O	C_T			х			X ⁽⁶⁾	X ⁽⁶⁾	Port E2		
64	(2)(1)	PE3	I/O	CT		x	х			х	х	Port E3		

Table 2. Device pin description (continued)

1. On the chip, each I/O port may have up to 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

2. On the chip, each I/O port may have up to eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

3. It is mandatory to connect all available V_{DD} and V_{AREF} pins to the supply voltage and all V_{SS} and V_{SSA} pins to ground.

4. Not connected in 48 Kbyte and 64 Kbyte ROM devices

5. OSC1 and OSC2 pins connect a crystal/ceramic resonator or an external source to the on-chip oscillator; see Section 6.4: *Multi-oscillator (MO)* and Section 19.5: Clock and timing characteristics for more details.

6. Pull-up always activated on PE2; see limitation Section 22.1.8: Pull-up always active on PE2.

	Legend / Abbreviations	s for Table 2:
	Туре:	I = input O = output S = supply
	Input level:	A = dedicated analog input
	In/Output level:	C = CMOS $0.3V_{DD}/0.7V_{DD}$ C _T = CMOS $0.3V_{DD}/0.7V_{DD}$ with input trigger
	Output level:	HS = 20mA high sink (on N-buffer only)
	Port and control config	juration:
solf	• Input:	float = floating wpu = weak pull-up int = interrupt ^(a) ana = analog
262	• Output:	OD = open-drain ^(b) PP = push-pull

b. In the open-drain output column, "T" defines a true open-drain I/O (P-Buffer and protection diode to V_{DD} are not implemented). See *Section 9: I/O ports* and *Section 19.8: I/O port pin characteristics* for more details.

a. In the interrupt input column, "eiX" defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, otherwise the configuration is floating interrupt input.

Table 6.	Arithmetic management bits (continued)
----------	--

Bit	Name	Function
1	Z	 Zero This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions.
0	С	 <i>Carry/borrow</i> This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

Interrupt management bits Table 7.

Table 7.		Interrupt management bits
Bit	Name	Function
5	11	Interrupt Software Priority 1 The combination of the I1 and I0 bits gives the current interrupt software priority.
3	10	Interrupt Software Priority 0 The combination of the I1 and I0 bits gives the current interrupt software priority.

Table 8. Interrupt software priority selection

Interrupt software priority	Level	11	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	↓	0	0
Level 3 (= interrupt disable)	High	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx). They can be also set/cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions.

See Chapter 7: Interrupts on page 50 for more details.

Stack pointer (SP) register 5.3.5

SP												R	eset va	alue: 0	1 FFh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
								RW	RW	RW	RW	RW	RW	RW	RW

6.5 Reset sequence manager (RSM)

6.5.1 Introduction

The reset sequence manager includes three RESET sources as shown in *Figure 11*:

- External RESET source pulse
- Internal LVD RESET (low voltage detection)
- Internal WATCHDOG RESET

These sources act on the RESET pin and it is always kept low during the delay phase.

The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map.

The basic RESET sequence consists of three phases as shown in *Figure 12*:

- Active phase depending on the RESET source
- 256 or 4096 CPU clock cycle delay (selected by option byte)
- RESET vector fetch

Caution: When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is not programmed. For this reason, it is recommended to keep the RESET pin in low state until programming mode is entered, in order to avoid unwanted behavior.

The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilize and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application (see *Section 21.1.1: Flash configuration on page 225*).

The RESET vector fetch phase duration is 2 clock cycles.

Application notes

The LVDRF flag is not cleared when another RESET type occurs (external or watchdog); the LVDRF flag remains set to keep trace of the original failure.

In this case, software can detect a watchdog reset but cannot detect an external reset.

Caution: When the LVD is not activated with the associated option byte, the WDGRF flag cannot be used in the application.

obsolete Product(s)- Obsolete Product(s)

57

roductls

7 Interrupts

7.1 Introduction

The ST7 enhanced interrupt management provides the following features:

- Hardware interrupts
- Software interrupt (TRAP)
- Nested or concurrent interrupt management with flexible interrupt priority and level management:
 - Up to 4 software programmable nesting levels
 - Up to 16 interrupt vectors fixed by hardware
 - 2 non-maskable events: RESET, TRAP
 - 1 maskable Top Level event: TLI

This interrupt management is based on:

- Bit 5 and bit 3 of the CPU CC register (I1:0)
- Interrupt software priority registers (ISPRx)
- Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order

This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller.

7.2 Masking and processing flow

The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see *Table 14*). The processing flow is shown in *Figure 17*.

When an interrupt request has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to *Table 19: Interrupt mapping* for vector addresses).

The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume.

flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register.

The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register.

Note: The clearing sequence resets the internal latch. A pending interrupt (that is, waiting to be serviced) will therefore be lost if the clear sequence is executed.

7.3 Interrupts and low power modes

All interrupts allow the processor to exit the Wait low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the Halt modes (see column "Exit from Halt/Active Halt" in *Table 19: Interrupt mapping*). When several pending interrupts are present while exiting Halt mode, the first one serviced can only be an interrupt with "exit from Halt mode" capability and it is selected through the same decision process shown in *Figure 18*.

Note:

te: If an interrupt that is not able to exit from Halt mode is pending with the highest priority when exiting Halt mode, this interrupt is serviced after the first one serviced.

7.4 Concurrent and nested management

The following *Figure 19* and *Figure 20* show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in *Figure 20*. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0, TLI. The software priority is given for each interrupt.

Warning: A stack overflow may occur without notifying the software of the failure.

Figure 19. Concurrent interrupt management

Halt mode recommendations

- Make sure that an external event is available to wake up the microcontroller from Halt mode.
- When using an external interrupt to wake up the microcontroller, re-initialize the corresponding I/O as "Input Pull-up with Interrupt" before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition.
- For the same reason, reinitialize the level sensitiveness of each external interrupt as a precautionary measure.
- The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction due to a program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E.
- As the HALT instruction clears the interrupt mask in the CC register to allow interrupts, the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt).

Related documentation

ST7 Keypad Decoding Techniques, Implementing Wake-Up on Keystroke (AN 980) How to Minimize the ST7 Power Consumption (AN1014) Using an active RC to wake up the ST7LITE0 from power saving mode (AN1605)

70/244

10.4 How to program the watchdog timeout

Figure 32 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in Figure 33.

Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset.

Approximate timeout duration Figure 32.

Bit	Name	Function
3	FOLV1	 Forced Output Compare 1 This bit is set and cleared by software. 0: No effect on the OCMP1 pin 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison
2	OLVL2	Output Level 2 This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode.
1	IEDG1	 Input Edge 1 This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
0	OLVL1	Output Level 1 The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.

13.7.2 Control register 2 (CR2)

	occurs with the OC1R register and the OC1E bit is set in the CR2 register.								
Control register 2 (CR2)									
CR2				O _O		Rese	t value: 0000	0 0000 (00h)	
	7	6	5	4	3	2	1	0	
00	C1E	OC2E	OPM	PWM	CC	[1:0]	IEDG2	EXEDG	
R	W	RW	RW	RW	F	W	RW	RW	

Table 59. CR2 register description

	Bit	Name	Function
5018	7	OC1E	 Output Compare 1 Pin Enable This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O) 1: OCMP1 pin alternate function enabled
	6	OC2E	 Output Compare 2 Pin Enable This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O) 1: OCMP2 pin alternate function enabled

I²C bus interface (I2C) 16

16.1 Introduction

The I²C bus interface serves as an interface between the microcontroller and the serial I²C bus. It provides both multimaster and slave functions, and controls all I²C bus-specific sequencing, protocol, arbitration and timing. It supports fast I²C mode (400 kHz).

16.2 Main features

- Josolete Product(s) Parallel-bus/I²C protocol converter
- Multimaster capability
- 7-bit/10-bit addressing
- SMBus V1.1 compliant
- Transmitter/Receiver flag
- End-of-byte transmission flag
- Transfer problem detection

16.2.1 I²C master features

- **Clock** generation
- I²C bus busy flag
- Arbitration Lost flag
- End of byte transmission flag
- Transmitter/Receiver flag
- Start bit detection flag
- Start and Stop generation

I²C slave features 16.2.2

- Stop bit detection
- I²C bus busy flag
- Detection of misplaced start or stop condition
- Programmable I²C address detection
- Transfer problem detection
- End-of-byte transmission flag
- Transmitter/Receiver flag

18.1.5 Indirect (short, long)

The required data byte to do the operation is found by its memory address, located in memory (pointer).

The pointer address follows the opcode. The indirect addressing mode consists of two submodes:

Indirect (short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode.

Indirect (long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

18.1.6 Indirect indexed (short, long)

This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode.

The indirect indexed addressing mode consists of two submodes:

Indirect indexed (short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode.

Indirect indexed (long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

Table 99.	Instructions supporting direct, indexed, indirect, and indirect indexed
10	addressing modes

	addressing modes					
colk	Туре	Instruction	Function			
~105		LD	Load			
		СР	Compare			
	Long and short instructions	AND, OR, XOR	Logical operations			
		ADC, ADD, SUB, SBC	Arithmetic Additions/Subtractions operations			
		BCP	Bit Compare			

19.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

19.2.1 Voltage characteristics

Table 103. Volta	ge characteristics
------------------	--------------------

Symbol	Ratings	Maximum value	Unit	
V _{DD} - V _{SS}	Supply voltage	6.5		
V _{PP} - V _{SS}	Programming voltage	13		
V (1)	Input voltage on true open-drain pin	V _{SS} - 0.3 to 6.5	v	
VIN [®]	Input voltage on any other pin	V_{SS} - 0.3 to V_{DD} + 0.3		
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	m\/	
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	mv	
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	See Section 19 7 3 on page	203	
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	See Section 19.7.5 on page	age 203.	

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

Supply current characteristics 19.4

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To obtain the total device consumption, the two current values must be added (except for Halt mode, for which the clock is stopped).

19.4.1 **Current consumption**

Table 110. Current consum	ption
---------------------------	-------

Symbol	Deveneter	Conditions	Flash	devices	ROM devices		Unit
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	Supply current in Run mode ⁽²⁾	$ f_{OSC} = 2 \text{ MHz}, \ f_{CPU} = 1 \text{ MHz} $ $ f_{OSC} = 4 \text{ MHz}, \ f_{CPU} = 2 \text{ MHz} $ $ f_{OSC} = 8 \text{ MHz}, \ f_{CPU} = 4 \text{ MHz} $ $ f_{OSC} = 16 \text{ MHz}, \ f_{CPU} = 8 \text{ MHz} $	1.3 2.0 3.6 7.1	3.0 5.0 8.0 15.0	0.5 1.2 2.2 4.8	1.0 2.0 4.0 8.0	mA
	Supply current in Slow mode ⁽²⁾	$ f_{OSC} = 2 \text{ MHz}, \ f_{CPU} = 62.5 \text{ kHz} \\ f_{OSC} = 4 \text{ MHz}, \ f_{CPU} = 125 \text{ kHz} \\ f_{OSC} = 8 \text{ MHz}, \ f_{CPU} = 250 \text{ kHz} \\ f_{OSC} = 16 \text{ MHz}, \ f_{CPU} = 500 \text{ kHz} $	600 700 800 1100	2700 3000 3600 4000	100 200 300 500	600 700 800 950	μA
I _{DD}	Supply current in Wait mode ⁽²⁾	$ f_{OSC} = 2 \text{ MHz}, \ f_{CPU} = 1 \text{ MHz} $	0.8 1.2 2.0 3.5	3.0 4.0 5.0 7.0	0.5 0.8 1.5 3.0	1.0 1.3 2.2 4.0	mA
	Supply current in Slow Wait mode ⁽²⁾	$ f_{OSC} = 2 \text{ MHz}, \ f_{CPU} = 62.5 \text{ kHz} $ $ f_{OSC} = 4 \text{ MHz}, \ f_{CPU} = 125 \text{ kHz} $ $ f_{OSC} = 8 \text{ MHz}, \ f_{CPU} = 250 \text{ kHz} $ $ f_{OSC} = 16 \text{ MHz}, \ f_{CPU} = 500 \text{ kHz} $	580 650 770 1050	1200 1300 1800 2000	50 90 180 350	100 150 300 600	μA
	Supply current in Halt	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	<1	10	<1	10	μA
	mode, ,	-40°C ≤ T _A ≤ +125°C	5	50	<1	50	
	Supply current in Active Halt mode ⁽⁴⁾	$f_{OSC} = 2 \text{ MHz}$ $f_{OSC} = 4 \text{ MHz}$ $f_{OSC} = 8 \text{ MHz}$ $f_{OSC} = 16 \text{ MHz}$	415 430 460 550	525 550 600 700	15 30 60 120	25 50 100 200	μA

1. Data based on characterization results, tested in production at V_{DD} max. and f_{CPU} max.

Measurements are done in the following conditions:

- Program executed from RAM, CPU running with RAM access All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals in reset state - LVD disabled

- Clock input (OSC1) driven by external square wave

 In Slow and Slow Wait mode, f_{CPU} is based on f_{OSC} divided by 32
 To obtain the total current consumption of the device, add the clock source (*Section 19.4.2*) and the peripheral power consumption (Section 19.4.3).

- All I/O pins in push-pull 0 mode (when applicable) with a static value at V_{DD} or VSS (no load), LVD disabled. Data based on characterization results, tested in production at V_{DD} max. and f_{CPU} max. З.
- Data based on characterization results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a static value at V_{DD} or V_{SS} (no load); clock input (OSC1) driven by external square wave, LVD disabled. To obtain the total current consumption of the device, add the clock source consumption (*Section 19.4.2*). 4.

19.11 Communication interface characteristics

19.11.1 SPI (serial peripheral interface)

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Refer to *Section 19.8: I/O port pin characteristics* for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SPI clock frequency	Master, f _{CPU} = 8 MHz	f _{CPU} /128 = 0.0625	f _{CPU} /4 = 2	MH-
1/t _{c(SCK)}	SFI Clock frequency	Slave, f _{CPU} = 8 MHz	0	f _{CPU} /2 = 4	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time		see I/O po	rt pin description	
$t_{su(\overline{SS})}^{(1)}$	SS setup time ⁽²⁾	Slave	t _{CPU} + 50	00	
$t_{h(\overline{SS})}^{(1)}$	SS hold time	Slave	120		
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master Slave	100 90		
t _{su(MI)} (1) t _{su(SI)} (1)	Data input setup time	Master Slave	100 100		
t _{h(MI)} (1) t _{h(SI)} (1)	Data input hold time	Master Slave	100 100		ns
t _{a(SO)} ⁽¹⁾	Data output access time	Slave	0	120	
t _{dis(SO)} ⁽¹⁾	Data output disable time	Slave		240	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave (after enable edge)		120	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave (allel ellable euge)	0		
t _{v(MO)} ⁽¹⁾	Data output valid time	Master (after enable adda)		120	+
t _{h(MO)} ⁽¹⁾	Data output hold time	waster (alter enable euge)	0		^I CPU

Table 131. SPI characteristics

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{CPU} . For example, if $f_{CPU} = 8$ MHz, then $t_{CPU} = 1 / f_{CPU} = 125$ ns and $t_{su(\overline{SS})} = 175$ ns.

Figure 104. ST72P321Bxxx-Auto FastROM commercial product structure

Figure 105. ST72321Bxxx-Auto ROM commercial product structure

Fig	ure 106. ST	72321	B-Auto microco	onti	roller FASTROM/	ROM op	tion list	
			ST72321B-Auto mi (L	croco .ast u	ontroller FASTROM/ROM update: October 2007)	option list		
	Customer: Address: Contact: Phone No: Reference: The FASTROM/F	Non code	e name is assigned by S	STMi	 croelectronics.			
	FASTROM/ROM code must be sent in .S19 format. Hex extension cannot be processed. Device Type/Memory Size/Package (check only one option):							
	FASTROM DEVI	CE:	60K		48K	32K		
	LQFP44 10x10: LQFP64 10x10: LQFP64 14x14:		[] ST72P321B(J9)T [] ST72P321B(AR9)T [] ST72P321B(R9)T [] ST72P321B(R9)T		[] ST72P321B(J7)T [] ST72P321B(AR7)T [] ST72P321B(R7)T [] ST72P321B(R7)T	[] ST72P321B(J6)T [] ST72P321B(AR6)T [] ST72P321B(R6)T		S
							$\overline{\mathbf{C}}$	
	ROM DEVICE:		60K		48K	32K	<u>.0</u> .	
	LQFP44 10x10: LQFP64 10x10: LQFP64 14x14:		[] ST72321B(J9)T [] ST72321B(AR9)T [] ST72321B(R9)T		[] ST72321B(J7)T [] ST72321B(AR7)T [] ST72321B(R7)T	[] ST72321B(J6)T [] ST72321B(AR6)T [] ST72321B(R6)T		
	Conditioning for L	_QFP pac	kage (check only one o	ption	n):)		
			[] Tape & Reel		[] Tray			
	Temperature range :		[] A (-40°C to +85°C) [] B (-40°C to +105°C) [] C (-40°C to +125°C)					
	Special Marking:		[] No [] Yes "" (10 characters max) Authorized characters are letters, digits, '.', '-', '/ and spaces				ices only.	
	Clock Source Selection: [] Resonator: [] LP: Low power resonator (1 to 2 MHz) [] MP: Medium power resonator (2 to 4 MHz) [] MS: Medium speed resonator (4 to 8 MHz) [] HS: High speed resonator (8 to 16 MHz) [] Internal RC [] External Clock (sets MP Medium Power resonator in Option Byte)							
. (PLL ⁽¹⁾⁽²⁾		[] Disabled		[] Enabled			
	LVD Reset		[] Disabled [] Med.threshold		[] High threshold [] Low threshold			
	Reset Delay		[] 256 Cycles		[] 4096 Cycles			
	Watchdog Selecti	ion	[] Software Activation	[] Ha	ardware Activation			
	Halt when Watchdog on		[] Reset		[] No reset			
	Readout Protection	on	[] Disabled		[] Enabled			
	Date							
	Note 1 : PLL mus Note 2 : The PLL	t be disa can be e	bled if internal RC Netw nabled only if the reson	ork is ator i	s selected. is configured to "Medium	Power: 2~4	MHz".	
	CAUTION: The Readout Protection binary value is inverted between ROM and Flash products. The option byte checksum will differ between ROM and Flash.							
1	Please download the latest version of this option list from www.st.com.							

obsole

