

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	-
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5744bk1ammh2r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

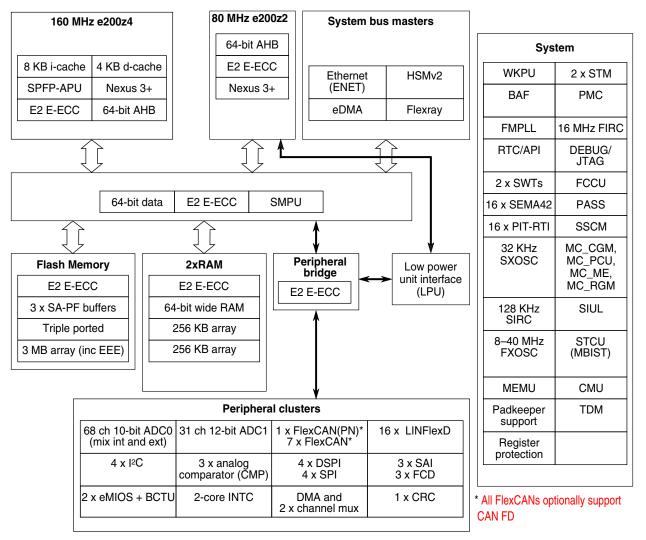


Figure 1. MPC5746C block diagram

2 Family comparison

The following table provides a summary of the different members of the MPC5746C family and their proposed features. This information is intended to provide an understanding of the range of functionality offered by this family. For full details of all of the family derivatives please contact your marketing representative.

3.2 Ordering Information

Example	Code	PC 57	4	6	С	Ş	К0	М	MJ	6	R	
·	Qualification Status								1	1	1	
	Power Architecture											
	Automotive Platform											
	Core Version											
Flas	sh Size (core dependent)											
	Product											
	Optional fields											
	Fab and mask indicator											
	Temperature spec.											
	Package Code]			
	CPU Frequency											
R = Ta	pe & Reel (blank if Tray)											
	Due due 6 Manual au		-				D -	- 1	0			
Qualification Status	Product Version	Fab and I K = TSMC		versic	on indi	icator		-	Code 6 LQFP	ED		
P = Engineering samples S = Automotive qualified	B = Single core C = Dual core	#(0,1,etc.)		sion o	f the				6 MAPB			
	C = Dual core	maskset,							4 MAPE			
PC = Power Architecture		maeneeu,					Μ	H = 10	OMAPB	GA		
Automotive Platform		Temperat	ure sp	bec.			СР	U Fre	quency			
57 = Power Architecture in 55nm	Omtion of tiolds	C = -40.C								unto	120 MHz	
	Optional fields	V = -40.C								•	160 MHz	
Core Version	Blank = No optional feature	M = -40.C	to +12	25.0	a		0 -		sciales	upto	100 1012	
4 = e200z4 Core Version (highest core version in the case of multiple	S = HSM (Security Module)											
cores)	F = CAN FD											
,	B = HSM + CAN FD								Metho			
Flash Memory Size	R = 512K RAM							= Tape ink = T	and ree			
4 = 1.5 MB	T = HSM + 512K RAM						Dia		lay			
5 = 2 MB	G* = CAN FD + 512K RAM											
6 = 3 MB	H* = HSM + CAN FD + 512K RAM											
	* G and H for 5746 B/C only											
Note: Not all part number con	nbinations are available as produ	ction produ	ıct									
		enon prout										

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

General

Table 6. Recommended operating conditions ($V_{DD HV x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Мах	Unit
T _A ⁸	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. Only applicable when supplying from external source.
- 5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 6. VIN1_CMP_REF \leq VDD_HV_A
- 7. This supply is shorted VDD_HV_A on lower packages.
- 8. T_J =150°C. Assumes T_A =125°C
 - Assumes maximum θ JA of 2s2p board. See Thermal attributes

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD_HV_x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V
$V_{DD_HV_B}$					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage	—	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	—	3.15	5.5	V
VDD_HV_ADC0 HV ADC supply voltage VDD_HV_ADC1		_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage		1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	5.5 ⁵	V
I _{INJPAD}			-3.0	3.0	mA
T _A ⁷	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{\text{SS}\ \text{HV}}$ unless otherwise specified

2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.

3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with $C_{flash_{reg}}$.

Table 8. Voltage regulator electrical specifications (continued)	Table 8.	Voltage regulator	electrical s	specifications ((continued)
--	----------	-------------------	--------------	------------------	-------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{flash_} reg ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001		0.03	Ohm
$C_{_{HV_VDD_A}}$	VDD_HV_A supply capacitor ^{5, 5}	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
$C_{_{HV_VDD_B}}$	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
$C_{_{HV_VDD_C}}$	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47		_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_	_	0.1	Ohm
t _{SU}	Start-up time with external ballastafter main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	_	74		μs
t _{SU_int}	Start-up time with internal ballast after main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	_	103		μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{fp_{reg}} = 3 \ \mu F$		1.0		μs

- Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
 Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.

General

Symbol	Parameter	State	Conditions	Co	n	Threshold U			Unit	
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled at Start			
2_cold	voltage monitoring,		Trimmed			al	1.1400	1.1550	1.1750	V
	detecting at the	Rise	Untrimmed				Disabled	at Start		
	device pin		Trimmed				1.1600	1.1750	1.1950	V

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	_	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	—	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_LV} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		V _{DD_LV} = 1.25 V				

Table 10. Current consumption characteristics (continued)

Symbol	Parameter	Va	lue	Unit	
		Min	Max		
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V	
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V	
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V	
Vil_hys	ys CMOS Input Buffer Low Voltage (with hysteresis VDD_ enabled) 0		0.35*VDD_HV_ x	V	
Vih CMOS Input Buffer High Voltage (with hysteresis disabled)		0.55 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V	
Vil CMOS Input Buffer Low Voltage (with hysteresis disabled)		VDD_HV_x - 0.3	0.40 * VDD_HV_x ¹	V	
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V	
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	23		μA	
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		82	μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA	
Pull_loh	Weak Pullup Current ⁴	30	80	μA	
Pull_lol	Weak Pulldown Current ⁵	30	80	μA	
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA	
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x ¹	—	V	
Vol	Output Low Voltage ⁷	_	0.2*VDD_HV_x	V	
	Output Low Voltage ⁸		0.1*VDD_HV_x		
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA	
lol_f	Full drive lol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA	
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA	
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA	

Table 17. DC electrical specifications @ 5 V Range (continued)

- 1. $VDD_HV_x = VDD_HV_A$, VDD_HV_B , VDD_HV_C
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA $\,$
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

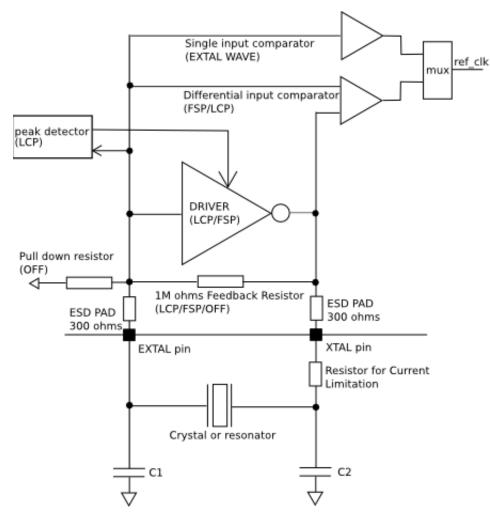


Figure 7. Oscillator connections scheme

Table 23.	Main oscillator electrical characteristics
-----------	--

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
f _{XOSCHS}	Oscillator frequency	FSP/LCP		8		40	MHz
g _{mXOSCHS}	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33	_	
V _{XOSCHS}	Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
	Amplitude	Amplitude 16 MHz 40 MHz	16 MHz		1.0		
			40 MHz		0.8		-
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms
			16 MHz		1		
			40 MHz		0.5		

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

Figure 8. DSPI classic SPI timing — master, CPHA = 0

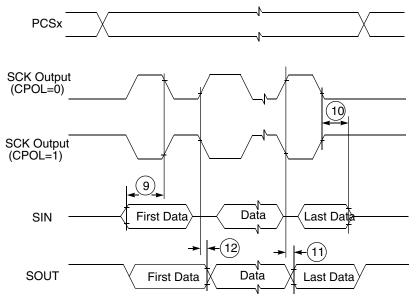


Figure 9. DSPI classic SPI timing — master, CPHA = 1

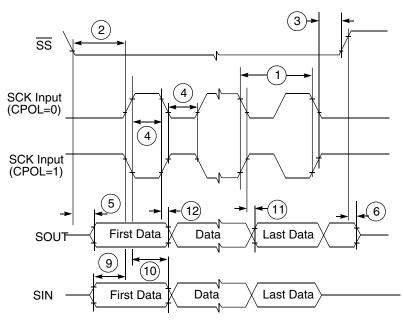


Figure 10. DSPI classic SPI timing — slave, CPHA = 0

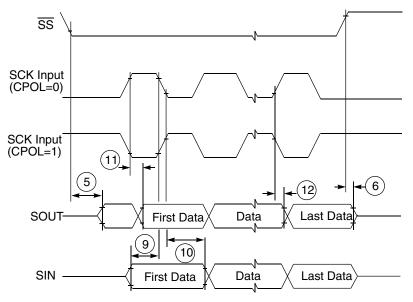
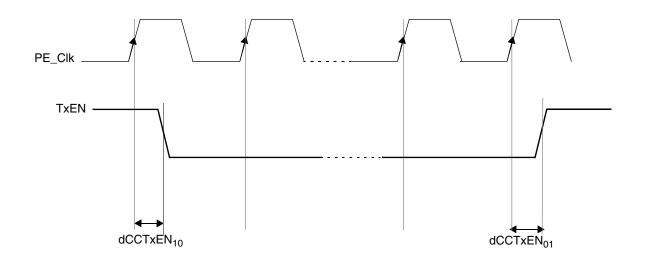



Figure 11. DSPI classic SPI timing — slave, CPHA = 1

6.4.2.3 TxD

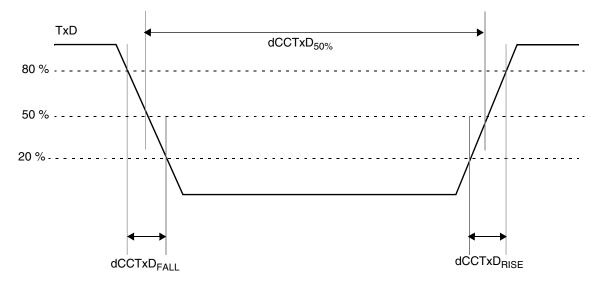


Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output		9 ²	ns

Table continues on the next page...

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Max	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15		ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

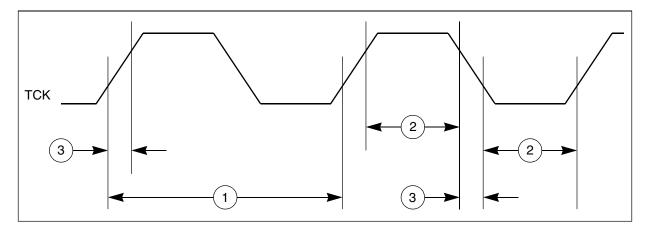


Figure 25. JTAG test clock input timing

Debug specifications

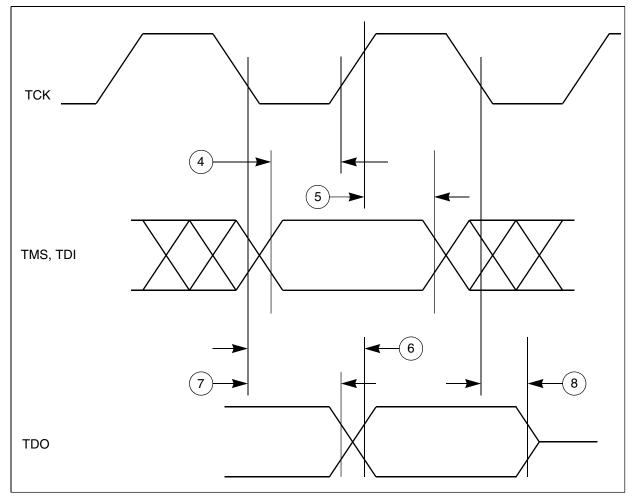


Figure 26. JTAG test access port timing

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
-	R _{θJB}	Thermal resistance, junction to board	10.8	°C/W	44
-	R _{θJC}	Thermal resistance, junction to case	8.2	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	7.8	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in package drawing.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

Package	NXP Document Number
100 MAPBGA	98ASA00802D

Table continues on the next page...

Pinouts

Package	NXP Document Number
176-pin LQFP-EP	98ASA00698D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

10.1 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1.1 Reset sequence duration

Table 49 specifies the reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter	T _{Reset}		Unit	
			Min	Тур 1, 1	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	6.2	7.3	-	ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	110	182	-	us
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	6.2	7.3	-	ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	110	182	-	us
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	7	9	-	us

Table 49. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

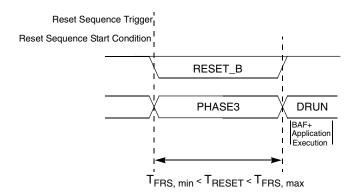


Figure 36. Functional reset sequence short

The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

11.1 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev 1	14 March 2013	Initial Release

Table 51.	Revision	History ((continued)
-----------	----------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 4	9 March 2016	 In section, Voltage regulator electrical characteristics In table, Voltage regulator electrical specifications: Updated the footnote on V_{DD_HV_BALLAST}
Rev 5	27 February 2017	 In Family Comparison section: Updated the "MPC5746C Family Comparison" table. added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map" tables.
		 Updated the product version, flash memory size and optional fields information in Ordering Information section.
		In Recommended Operating Conditions section, removed the note related to additional crossover current.
		 VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage regulator electrical characteristics section.
		 In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics" table.
		 In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table.
		 In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In "Flash memory AC timing specifications" table in Flash memory AC timing specifications section: Updated the "t_{psus}" typ value from 7 us to 9.4 us. Updated the "t_{psus}" max value from 9.1 us to 11.5 us.
		 Added "Continuous SCK Timing" table in DSPI timing section.
		 Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics (for 12-bit)" table in ADC electrical specifications section.
		 In "STANDBY Current consumption characteristics" table in Supply current characteristics section: Updated the Typ and max values of IDD Standby current. Added IDD Standby3 current spec for FIRC ON.
		Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications section.
		Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration section, and Reset Sequence Distribution as its sub-sections.

Revision History

Rev. No.	Date	Substantial Changes
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes.
		 In AC Specifications@5V section, added two notes.
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table.
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table.
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us.
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table.

Table 51. Revision History (continued)