

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	-
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5744bk1avmh2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Debug functionality
 - e200z2 core:NDI per IEEE-ISTO 5001-2008 Class3+
 - e200z4 core: NDI per IEEE-ISTO 5001-2008 Class 3+
- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Two System Timer Modules (STM)
 - Three Software Watchdog Timers (SWT)
 - 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7 (CJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL-B compliance
- Multiple operating modes
 - Includes enhanced low power operation

Start Address	End Address	Flash block	RWW partition	MPC5744	MPC5745	MPC5746
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	not available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	7	not available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	7	not available	not available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	7	not available	not available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	not available	not available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	not available	not available	not available

Table 2. MPC5746C Family Comparison - NVM Memory Map 1

Table 3. MPC5746C Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW partition	MPC5744B	MPC5744C
				MPC5745B	MPC5745C
				MPC5746B	MPC5746C
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	not available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	not available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	not available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	not available	available

Table 4. MPC5746C Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x4000000	0x40001FFF	8 KB	SRAM0	available	available	available
0x40002000	0x4000FFFF	56 KB	SRAM1	available	available	available
0x40010000	0x4001FFFF	64 KB	SRAM2	available	available	available
0x40020000	0x4002FFFF	64 KB	SRAM3	available	available	available

Table continues on the next page...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{matrix} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^{2,3} \end{matrix}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷		-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage	—	-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground	—	-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage		-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate		0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature		-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

General

- 5. 1. For VDD_HV_x, 1µf on each side of the chip
 - a. 0.1 μf close to each VDD/VSS pin pair.
 - b. 10 μf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
 amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
 specified by CFP_REG parameter
- 6. Only applicable to ADC1
- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, $V_{DD_HV_BALLAST}$ must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may case the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	_	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		T _a = 105 °C	—	255	1350	
		$T_a = 125 \ ^{\circ}C^{2}$	—	396	2600	
STANDBY3	STANDBY with 256K RAM	$T_a = 25 \text{ °C}$	—	80	_	μA
		T _a = 85 °C	—	180	800	
		T _a = 105 °C	—	290	1425	
		$T_{a} = 125 \ ^{\circ}C^{2}$	—	465	2900	
STANDBY3	FIRC ON	T _a = 25 °C	—	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Prop. De L>H	elay (ns) ¹ /H>L	Rise/Fall Edge (ns)		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
Min	Max	Min	Max		MSB,LSB
	6/6		1.9/1.5	25	11
2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
6.4/5	19.5/19.5	3.5/2.5	12/12	200	
2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
0.090	1.1	0.035	1.1	asymmetry ²	
2.9/3.5	12.5/11	1/1	7/6	50	
11/8	35/31	7.7/5	25/21	200	
8.3/9.6	45/45	4/3.5	25/25	50	01 ³
13.5/15	65/65	6.3/6.2	30/30	200	
13/13	75/75	6.8/6	40/40	50	00 ³
21/22	100/100	11/11	51/51	200	
	2/2		0.5/0.5	0.5	NA
	Prop. De L>H Min 2.5/2.5 6.4/5 2.2/2.5 0.090 2.9/3.5 11/8 8.3/9.6 13.5/15 13/13 21/22	Prop. Delay (ns) ¹ L>H/H>L Min Max 6/6 2.5/2.5 8.25/7.5 6.4/5 19.5/19.5 2.2/2.5 8/8 0.090 1.1 2.9/3.5 12.5/11 11/8 35/31 8.3/9.6 45/45 13.5/15 65/65 13/13 75/75 21/22 100/100 2/2 2/2	Prop. Delay (ns) ¹ Rise/Fall L>H/H>L Min Min Max Min 6/6	Prop. Delay (ns)' L>H/H>LRise/Fall Edge (ns)MinMaxMinMax $6/6$ 1.9/1.5 $2.5/2.5$ $8.25/7.5$ $0.8/0.6$ $3.25/3$ $6.4/5$ $19.5/19.5$ $3.5/2.5$ $12/12$ $2.2/2.5$ $8/8$ $0.55/0.5$ $3.9/3.5$ 0.090 1.1 0.035 1.1 $2.9/3.5$ $12.5/11$ $1/1$ $7/6$ $11/8$ $35/31$ $7.7/5$ $25/21$ $8.3/9.6$ $45/45$ $4/3.5$ $25/25$ $13.5/15$ $65/65$ $6.3/6.2$ $30/30$ $13/13$ $75/75$ $6.8/6$ $40/40$ $21/22$ $100/100$ $11/11$ $51/51$ $2/2$ $2/2$ $0.5/0.5$	Prop. Delay (ns) ' L>H/H>LRise/Fall Edge (ns) Rise/Fall Edge (ns)Drive Load (pF)MinMaxMinMax $6/6$ 1.9/1.5252.5/2.58.25/7.50.8/0.63.25/350 $6.4/5$ 19.5/19.53.5/2.512/122002.2/2.58/80.55/0.53.9/3.5250.0901.10.0351.1asymmetry ² 2.9/3.512.5/111/17/65011/835/317.7/525/212008.3/9.645/454/3.525/255013.5/1565/656.3/6.230/3020013/1375/756.8/640/405021/22100/10011/1151/51200

Table 14. Functional Pad AC Specifications @ 3.3 V Range

1. As measured from 50% of core side input to Voh/Vol of the output

- This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.
- 3. Slew rate control modes
- 4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Figure 5. ADC characteristics and error definitions

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage ^{1, 1}	-47	_	47	mV
V _H	Analog comparator hysteresis ^{2, 2}	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01	_	40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	• CR0[HYSTCTR] = 11			100	
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage		10	16	μΑ
INL	6-bit DAC integral non-linearity	-0.5		0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8		0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Figure 7. Oscillator connections scheme

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Мах	Unit	
fxoschs	Oscillator frequency	FSP/LCP		8		40	MHz	
9 _{mXOSCHS}	Driver	LCP			23		mA/V	
	Transconduct ance	FSP			33			
V _{XOSCHS}	Oscillation	Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
	Amplitude	Amplitude	16 MHz		1.0			
			40 MHz		0.8			
T _{XOSCHSSU}	Startup time	Startup time FS	Startup time FSP/LCP ¹ 8 M	8 MHz		2		ms
			16 MHz		1			
			40 MHz]	0.5]		

Table continues on the next page...

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit		16 MHz		2.2		
	supply current		40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
VIL	Input low level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Мах	
F _{Target}	IRC target frequency	get frequency —		16	—	MHz
PTA	IRC frequency variation after trimming	equency variation after trimming —		—	5	%
T _{startup}	Startup time	—		—	1.5	us
T _{STJIT}	Cycle to cycle jitter			—	1.5	%
T _{LTJIT}	Long term jitter				0.2	%

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP			5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

Figure 10. DSPI classic SPI timing — slave, CPHA = 0

Figure 11. DSPI classic SPI timing — slave, CPHA = 1

Figure 12. DSPI modified transfer format timing — master, CPHA = 0

Figure 13. DSPI modified transfer format timing — master, CPHA = 1

No	Parameter	Value		Unit
		Min	Max	
S15	S15 SAI_BCLK to SAI_TXD/SAI_FS output valid		28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17 SAI_RXD setup before SAI_BCLK		10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Table 44. Slave mode SAI Timing (continued)

Figure 24. Slave mode SAI Timing

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 45. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Мах	Unit
1	t _{JCYC}	TCK Cycle Time ^{2, 2}	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	—	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ^{3, 3}	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0	_	ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance		15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid		600 ^{4, 4}	ns

Table continues on the next page ...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Pinouts

Package	NXP Document Number
176-pin LQFP-EP	98ASA00698D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

10.1 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1.1 Reset sequence duration

Table 49 specifies the reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter	T _{Reset}			Unit
			Min	Тур 1, 1	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled 6.2 7.		7.3	-	ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled 110 182 -		-	us	
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot 6.2 7.3 -		ms		
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot 110 182 -		us		
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	7	9	-	us

Table 49. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51. R	evision	History ((continued)
-------------	---------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 2	7 August 2015	In features:
	-	Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
		flash programming via a serial link (SCI)
		Updated FlexCAN3 with FD support
		Updated number of STMs to two.
		 In Diock diagram. Undated SRAM size from 128 KB to 256 KB
		In Family Comparison:
		 Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC5746C Family Comparison table.
		 In Ordering parts: Undated ordering parts diagram to include 100 MAPBGA information and optional
		fields.
		In table: Absolute maximum ratings
		 Removed entry: 'V_{SS_HV}'
		 Added spec for 'V_{DD12}'
		Updated 'Max' column for 'V _{INA} '
		 Opdated footnote to V_{DD_HV_ADC1_REF}. Added footnote to 'Conditions' All voltages are referred to V_{oo uv} unless.
		otherwise specified
		 Removed footnote from 'Max', Absolute maximum voltages are currently
		maximum burn-in voltages. Absolute maximum specifications for device stress
		have not yet been determined.
		In section: Recommended operating conditions Addad energing texts "The following texts describes the energing conditions
		 Added opening text. The following table describes the operating conditions Added note: "Vop two A Vop two and Vop two are all"
		• In table: Recommended operating conditions (VDD HV $x = 3.3$ V) and
		(VDD_HV_x = 5 V)
		 Added footnote to 'Conditions' cloumn, (All voltages are referred to V_{SS_HV}
		unless otherwise specified).
		 Updated footnote for 'Min' column to Device will be functional down (and electrical specifications as per various datasheet parameters will be
		guaranteed) to the point where one of the LVD/HVD resets the device
		When voltage drops outside range for an LVD/HVD, device is reset.
		 Removed footnote for 'V_{DD HV A}', 'V_{DD HV B}', and 'V_{DD HV C}' entry and
		updated the parameter column.
		• Removed entry : 'V _{SS_HV} '
		Updated 'Parameter' column for 'V _{DD_HV_FLA} ', 'V _{DD_HV_ADC1_REF} ', 'V _{DD_LV} '
		Updated With Column for V _{DD_HV_ADC0} V _{DD_HV_ADC1} Updated 'Parameter' 'Min' 'Max' columns for 'V _{DD_HV_ADc0} and 'V _{DD_HV_ADc1}
		• Updated footnote for $V_{DD \perp V}$ to $V_{DD \perp V}$ supply pins should never be
		grounded (through a small impedance). If these are not driven, they should
		only be left floating.
		Removed row for symbol 'V _{SS_LV} '
		 Removed footnote from 'Max' column of 'V_{DD_HV_ADC0}' and 'V_{DD_HV_ADC1}', (PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
		$V_{DD_HV_B}$ domain hence $V_{DD_HV_ADC1}$ should be within ±100 mV of
		V _{DD_HV_B} when these channels are used for ADC_1).
		Bemoved footnote from 'Visit own perc' (Only applicable when supplying
		from external source).
		 In table: Recommended operating conditions (V_{DD HV x} = 5 V)
		 Added spec for 'V_{IN1_CMP_REF}' and corresponding footnotes.

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 In section, Thermal attributes Added table for 100 MAPBGA
		 In section Obtaining package dimensions Updated package details for 100 MAPBGA
		Editoral updates throughtout including correction of various module names.

Table 51. Revision History (continued)

Table continues on the next page...

Table 51. Revision History (continue

Rev. No.	Date	Substantial Changes
Rev 4	9 March 2016	 In section, Voltage regulator electrical characteristics In table, Voltage regulator electrical specifications: Updated the footnote on V_{DD-HV_BALLAST}
Rev 5	27 February 2017	 In Family Comparison section: Updated the "MPC5746C Family Comparison" table. added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map" tables.
		 Updated the product version, flash memory size and optional fields information in Ordering Information section.
		 In Recommended Operating Conditions section, removed the note related to additional crossover current.
		 VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage regulator electrical characteristics section.
		 In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics" table.
		 In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table. In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In "Flash memory AC timing specifications" table in Flash memory AC timing specifications section: Updated the "t_{psus}" typ value from 7 us to 9.4 us. Updated the "t_{psus}" max value from 9.1 us to 11.5 us.
		Added "Continuous SCK Timing" table in DSPI timing section.
		 Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics (for 12-bit)" table in ADC electrical specifications section.
		 In "STANDBY Current consumption characteristics" table in Supply current characteristics section: Updated the Typ and max values of IDD Standby current. Added IDD Standby3 current spec for FIRC ON.
		 Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications section.
		 Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration section, and Reset Sequence Distribution as its sub-sections.

Table continues on the next page ...