

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz, 160MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	129
Program Memory Size	1.5MB (1.5M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5744cbk1avku6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Debug functionality
 - e200z2 core:NDI per IEEE-ISTO 5001-2008 Class3+
 - e200z4 core: NDI per IEEE-ISTO 5001-2008 Class 3+
- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Two System Timer Modules (STM)
 - Three Software Watchdog Timers (SWT)
 - 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7 (CJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL-B compliance
- Multiple operating modes
 - Includes enhanced low power operation

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C
l ² C	4	4	4		4	
SAI/I ² S	3	3	3		3	
FXOSC			8 - 40) MHz		
SXOSC			32	KHz		
FIRC			16	MHz		
SIRC			128	KHz		
FMPLL				1		
Low Power Unit (LPU)			Y	es		
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB	
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1		1	
CRC				1		
MEMU			2	2		
STCU2				1		
HSM-v2 (security)			Opti	onal		
Censorship			Y	es		
FCCU				1		
Safety level			Specific functions	ASIL-B certifiable		
User MBIST			Y	es		
I/O Retention in Standby			Y	es		
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO		
Debug			JTA	GC,		
			cJT	AG		
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))	
		Z2 N3+ (C	Only available on 3	24BGA (developm	ent only))	
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)
						100 BGA

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

- 2. Based on 125°C ambient operating temperature and subject to full device characterization.
- 3. Contact NXP representative for part number
- 4. Additional SWT included when HSM option selected
- 5. See device datasheet and reference manual for information on to timer channel configuration and functions.
- 6. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Start Address	End Address	Flash block	RWW partition	MPC5744	MPC5745	MPC5746
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	not available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	7	not available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	7	not available	not available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	7	not available	not available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	not available	not available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	not available	not available	not available

Table 2. MPC5746C Family Comparison - NVM Memory Map 1

Table 3. MPC5746C Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW partition	MPC5744B	MPC5744C
				MPC5745B	MPC5745C
				MPC5746B	MPC5746C
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	not available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	not available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	not available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	not available	available

Table 4. MPC5746C Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x4000000	0x40001FFF	8 KB	SRAM0	available	available	available
0x40002000	0x4000FFFF	56 KB	SRAM1	available	available	available
0x40010000	0x4001FFFF	64 KB	SRAM2	available	available	available
0x40020000	0x4002FFFF	64 KB	SRAM3	available	available	available

Table continues on the next page...

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}{}^{2,3} \end{array}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷	_	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage	—	-0.3	6	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	3.3 V to 5.5V ADC supply voltage	_	-0.3	6.0	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	3.3V to 5.5V ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage	_	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V_{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{ramp}	Supply ramp rate	_	0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

4.4 Voltage monitor electrical characteristics

Table 9.	Voltage monitor electrical characteristics
----------	--

Symbol	Parameter	State	Conditions	Co	nfiguratio	n		Thresho	ld	Unit
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V
	on reset detector	eset detector Trimmed ve	ve	-	-	-	V			
		Rise	Untrimmed			0.980	1.029	1.078	V	
			Trimmed				-	-	-	V
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start	1	
d	voltage monitoring,		Trimmed	-		al	1.325	1.345	1.375	V
	detecting at	Rise	Untrimmed				Disabled	at Start		
	device pin		Trimmed				1.345	1.365	1.395	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
2_hot	voltage monitoring,		Trimmed			ve	1.1250	1.1425	1.1600	V
	detecting on the	Rise	Untrimmed			1.1000	1.1400	1.1800	V	
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
1_hot (BGFP)	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V
	detecting on the	Rise	Untrimmed				1.1000	1.140	1.1800	V
	PD1 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
0_hot (BGFP)	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V
	detecting on the	Rise	Untrimmed	-			1.1000	1.1400	1.1800	V
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V
	on reset detector		Trimmed	-		ve	-	-	-	V
		Rise	Untrimmed	-			2.7500	2.9000	3.0500	V
			Trimmed	-			-	-	-	V
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V
0 ^{3, 3}	low voltage monitoring - low		Trimmed			ve	2.9780	3.0390	3.1000	V
	range	Rise	Untrimmed	-			2.7800	2.9530	3.1250	V
			Trimmed				3.0080	3.0690	3.1300	V
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disabled	at Start		
l ³	low voltage monitoring - high					ve	4.0600	4.151	4.2400	V
	range	Rise	Trimmed]			Disabled	at Start		
							4.1150	4.2010	4.3000	V

Table continues on the next page ...

General

Symbol	Parameter	State	Conditions	Configuration Threshold			d	Unit			
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V	
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled	at Start			
2_cold	voltage monitoring,		Trimmed			al	1.1400	1.1400 1.1550 1.1750	1.1750	V	
	detecting at the	Rise	Untrimmed			Disabled	at Start				
	device pin		Trimmed				1.1600	1.1750	1.1950	V	

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	—	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page ...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	—	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		$T_a = 105 \ ^{\circ}C$	—	255	1350	
		$T_a = 125 \ ^{\circ}C^2$	—	396	2600	
STANDBY3	STANDBY with	$T_a = 25 \text{ °C}$	—	80	_	μA
	256K RAM	T _a = 85 °C	—	180	800	
		$T_a = 105 \ ^{\circ}C$	—	290	1425]
		$T_a = 125 \ ^{\circ}C^2$	—	465	2900	1
STANDBY3	FIRC ON	$T_a = 25 \text{ °C}$	_	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Value		
			Min	Тур	Max	
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	_	mV
V _{DD_POR}	Minimum supply for strong pull-down activation	-	—	_	1.2	V
I _{OL_R}	Strong pull-down current ^{1, 1}	$\label{eq:Device under power-on reset} $V_{DD_HV_A} = V_{DD_POR}$$V_{OL} = 0.35^*V_{DD_HV_A}$$$	0.2	_	_	mA
		Device under power-on reset $V_{DD_{HV}A} = V_{DD_{POR}}$ $V_{OL} = 0.35^*V_{DD_{HV}IO}$	11	_		mA
W _{FRST}	RESET input filtered pulse	—	—	_	500	ns
W _{NFRST}	RESET input not filtered pulse	-	2000	—	_	ns
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	—	82	μA

 Table 18.
 Functional reset pad electrical specifications (continued)

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value		
		Min	Тур	Max	
W _{FPORST}	PORST input filtered pulse		—	200	ns
W _{NFPORST}	PORST input not filtered pulse	1000	—	_	ns
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	_	V
V _{IL}	Input low level	—	_	0.35 x V _{DD_HV_A}	V

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

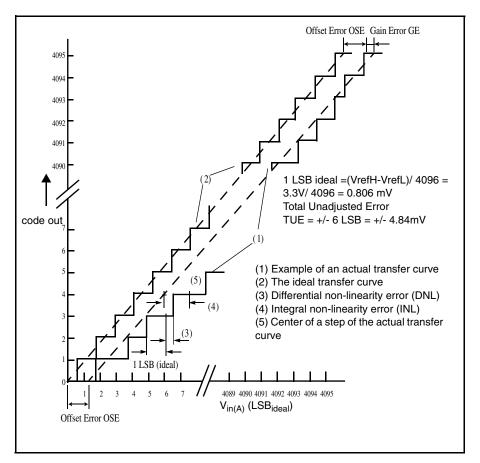
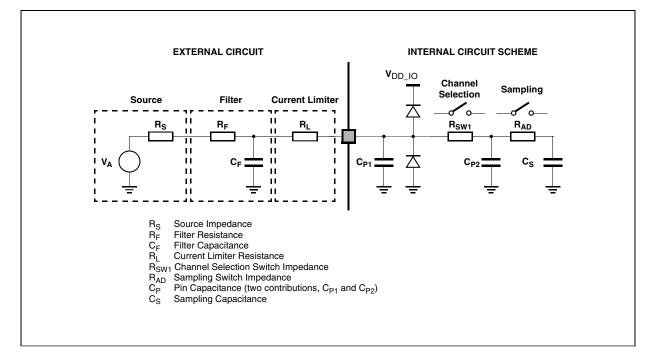



Figure 5. ADC characteristics and error definitions

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—		1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_		
C _S ^{6, 6}	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	—	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	—	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	—	_	875	Ω

Table continues on the next page...

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

Table 28. Jitter calculation (continued)

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

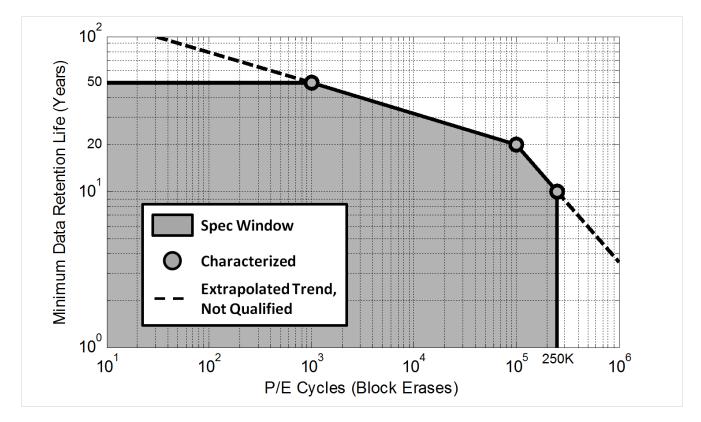
2. This jitter component is added when the PLL is working in the fractional mode.

3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.

4. The value of N is dependent on the accuracy requirement of the application. See Table 29

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10


6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

6.3.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.		_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs

Table continues on the next page...

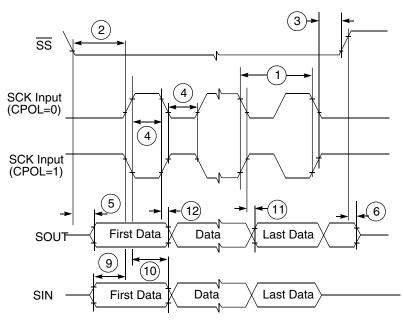


Figure 10. DSPI classic SPI timing — slave, CPHA = 0

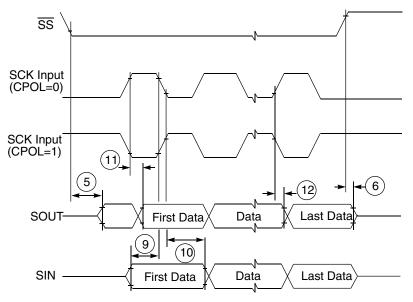


Figure 11. DSPI classic SPI timing — slave, CPHA = 1

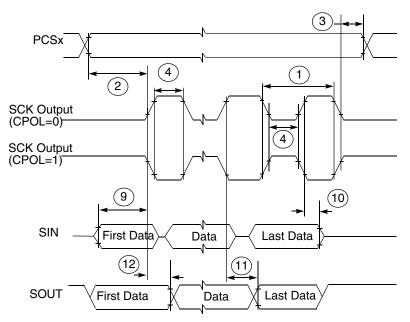
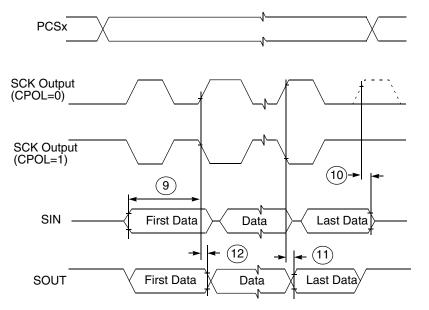
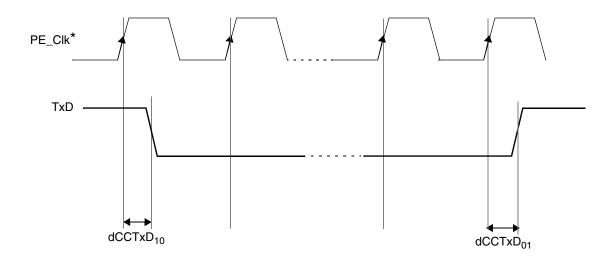


Figure 12. DSPI modified transfer format timing — master, CPHA = 0




Figure 13. DSPI modified transfer format timing — master, CPHA = 1

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	—	25	ns

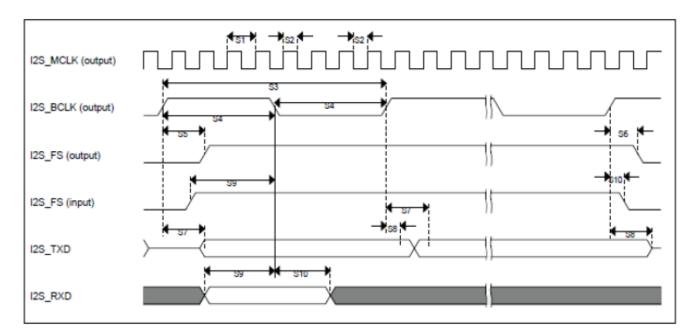
Table 39. TxD output characteristics (continued)

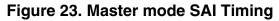
1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF.

2. For $3.3 \text{ V} \pm 10\%$ operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays


6.4.2.4 RxD


Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

FlexRay electrical specifications

no	Parameter	Va	alue	Unit
		Min	Max	
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

Table 43. Master mode SAI Timing (continued)

Table 44.	Slave	mode	SAI	Timing
-----------	-------	------	-----	--------

No	Parameter	Value		Unit
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	-	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	-	ns
S14	SAI_FS input hold after SAI_BCLK	2	-	ns

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	55
_	Ψ _{JT}	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51.	Revision	History	(continued)
-----------	----------	---------	-------------

Rev. No.	Date	Substantial Changes
	Date 'August 2015	 Substantial Changes In features: Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal flash programming via a serial link (SCI) Updated FlexCAN3 with FD support Updated flexCAN3 with FD support Updated flexCAN3 with FD support Updated StAM size from 128 KB to 256 KB. In Family Comparison: Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC574CF Tamily Comparison table. In Ordering parts: Updated ordering parts diagram to include 100 MAPBGA information and optional fields. In table: Absolute maximum ratings Removed entry: V_{SS, H}¹ Added spec for V_{DD1}⁴. Updated footnote to VConditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote to VConditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote to Conditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote for Max', Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. In section: Recommended operating conditions (VDD_HV_X = 3.3 V) and (VDD_HV_X = 5 V) Added footnoite for Vini' column to Device will be functional down (and electrical specifications as per valious datasheet parameters' Wile big uaranteed) to the point where one of the LVD/HVD, device is reset. Removed entry: V_{SS, HV} Updated footnote for V_{DD, HV, A} Col_HV_EA', V_{DD, HV, Ea'}, N_{DD, HV, C} and V_{DD, HV, C} entry and updated the parameter column. Removed entry: V_{SS, HV} Updated footnone for V_{DD, HV, ADC1}, FEF', V_{DD, HV, C}
		 from external source). In table: Recommended operating conditions (V_{DD HV x} = 5 V)

Table continues on the next page ...