

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	-
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5745bbk1acmh2

Table of Contents

1	Block	k diagran	n4			6.3.2	Flash me	emory Array Integrity and Margi	n
2	Fami	ly compa	arison4				Read sp	ecifications	39
3	Orde	ring part	s8			6.3.3	Flash me	emory module life specifications	40
	3.1	Determ	ining valid orderable parts8			6.3.4	Data ret	ention vs program/erase cycles.	40
	3.2	Orderin	ng Information9			6.3.5	Flash me	emory AC timing specifications	41
4	Gene	eral	9			6.3.6	Flash re	ad wait state and address pipeli	ne
	4.1	Absolut	te maximum ratings9				control s	settings	42
	4.2	Recom	mended operating conditions11		6.4	Commu	ınication ir	nterfaces	43
	4.3	Voltage	e regulator electrical characteristics13			6.4.1	DSPI tim	ning	43
	4.4	Voltage	e monitor electrical characteristics17			6.4.2	FlexRay	electrical specifications	49
	4.5	Supply	current characteristics				6.4.2.1	FlexRay timing	49
	4.6	Electro	static discharge (ESD) characteristics22				6.4.2.2	TxEN	49
	4.7	Electro	magnetic Compatibility (EMC) specifications23				6.4.2.3	TxD	50
5	I/O p	aramete	rs23				6.4.2.4	RxD	51
	5.1	AC spe	ecifications @ 3.3 V Range23			6.4.3	Ethernet	t switching specifications	52
	5.2	DC elec	ctrical specifications @ 3.3V Range24			6.4.4	SAI elec	trical specifications	53
	5.3	AC spe	ecifications @ 5 V Range25		6.5	Debug	specification	ons	55
	5.4	DC elec	ctrical specifications @ 5 V Range25			6.5.1	JTAG in	terface timing	55
	5.5	Reset p	pad electrical characteristics26			6.5.2	Nexus ti	ming	58
	5.6	PORST	Telectrical specifications28			6.5.3	WKPU/N	NMI timing	60
6	Perip	heral op	erating requirements and behaviours28			6.5.4	External	interrupt timing (IRQ pin)	61
	6.1	Analog	28	7	The	rmal attrib	outes		61
		6.1.1	ADC electrical specifications28		7.1	Therma	l attributes	S	61
		6.1.2	Analog Comparator (CMP) electrical	8	Dim	ensions			65
			specifications33		8.1	Obtaini	ng packag	e dimensions	65
	6.2	Clocks	and PLL interfaces modules34	9	Pino	outs			66
		6.2.1	Main oscillator electrical characteristics34		9.1	Packag	e pinouts	and signal descriptions	66
		6.2.2	32 kHz Oscillator electrical specifications36	10) Res	et sequer	ıce		66
		6.2.3	16 MHz RC Oscillator electrical		10.1	Reset s	equence		66
			specifications36			10.1.1	Reset se	equence duration	66
		6.2.4	128 KHz Internal RC oscillator Electrical			10.1.2	BAF exe	ecution duration	66
			specifications37			10.1.3	Reset se	equence description	67
		6.2.5	PLL electrical specifications37	11	1 Rev	ision Hist	ory		69
	6.3	Memor	y interfaces38		11.1	Revisio	n History		69
		6.3.1	Flash memory program and erase						
			specifications38						

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C		
I ² C	4	4	4		4			
SAI/I ² S	3	3	3		3			
FXOSC			8 - 40) MHz				
SXOSC			32 I	KHz				
FIRC			16 [ИНz				
SIRC			128	KHz				
FMPLL			-	1				
Low Power Unit (LPU)			Y	es				
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB			
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1	1				
CRC			-	1				
MEMU		2						
STCU2	1							
HSM-v2 (security)			Opti	onal				
Censorship			Y	es				
FCCU			-	1				
Safety level			Specific functions	ASIL-B certifiable				
User MBIST			Y	es				
I/O Retention in Standby			Y	es				
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO				
Debug			JTA	GC,				
			cJT	AG				
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))			
	Z2 N3+ (Only available on 324BGA (development only))							
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP		
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,		
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)		
						100 BGA		

^{1.} Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

^{2.} Based on 125°C ambient operating temperature and subject to full device characterization.

^{3.} Contact NXP representative for part number

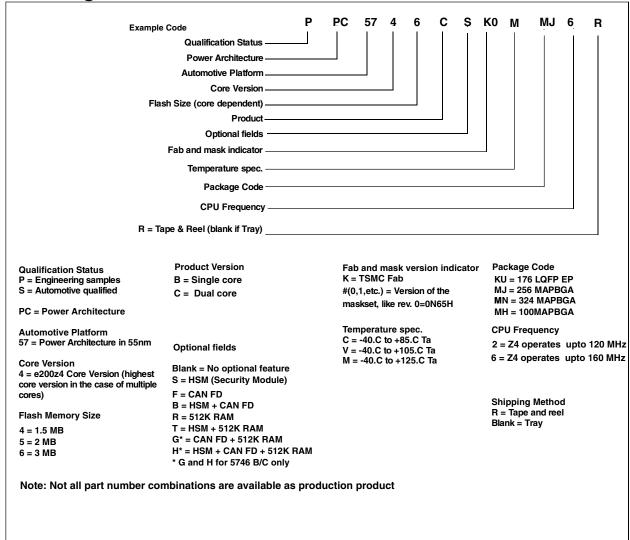
^{4.} Additional SWT included when HSM option selected

^{5.} See device datasheet and reference manual for information on to timer channel configuration and functions.

^{6.} Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Ordering parts

Table 4. MPC5746C Family Comparison - RAM Memory Map (continued)


Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x40030000	0x4003FFFF	64 KB	SRAM4	not available	available	available
0x40040000	0x4004FFFF	64 KB	SRAM5	not available	not available	available
0x40050000	0x4005FFFF	64 KB	SRAM6	not available	not available	available
0x40060000	0x4006FFFF	64 KB	SRAM7	not available	not available	optional
0x40070000	0x4007FFFF	64 KB	SRAM8	not available	not available	optional

3 Ordering parts

3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search for the following device number: MPC5746C.

3.2 Ordering Information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Table 6. Recommended operating conditions ($V_{DD\ HV\ x} = 3.3\ V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
T _A 8	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
T _J	Junction temperature under bias	_	-40	150	°C

- 1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified
- Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. Only applicable when supplying from external source.
- 5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 6. VIN1_CMP_REF ≤ VDD_HV_A
- 7. This supply is shorted VDD_HV_A on lower packages.
- 8. T_J=150°C. Assumes T_A=125°C
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD\ HV\ x} = 5\ V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
$V_{DD_HV_A}$	HV IO supply voltage	_	4.5	5.5	V
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	5.5 ⁵	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA
T _A ⁷	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
T _J	Junction temperature under bias	_	-40	150	°C

- 1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified
- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with Cflash req-

13

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF ≤ VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150$ °C. Assumes $T_A=125$ °C
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- \bullet Low voltage detector low threshold (LVD_IO_A_LO) for $V_{DD_HV_IO_A\ supply}$
- \bullet Low voltage detector high threshold (LVD_IO_A_Hi) for $V_{DD_HV_IO_A\ supply}$
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

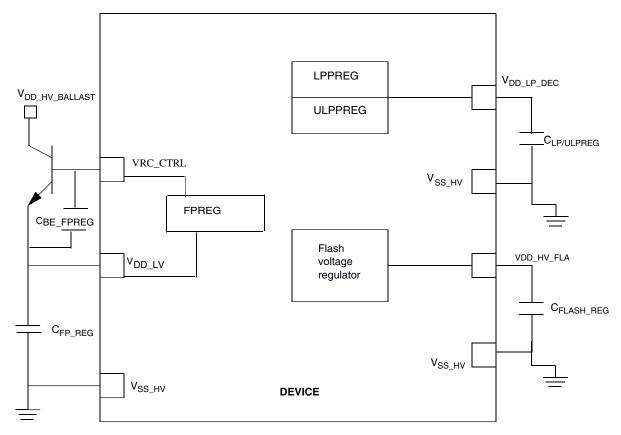


Figure 2. Voltage regulator capacitance connection

NOTE

On BGA, VSS_LV and VSS_HV have been joined on substrate and renamed as VSS.

Table 8. Voltage regulator electrical specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} ¹	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	_	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		

Table continues on the next page...

General

- 5. 1. For VDD_HV_x, 1µf on each side of the chip
 - a. 0.1 µf close to each VDD/VSS pin pair.
 - b. 10 µf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - 2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter
- 6. Only applicable to ADC1
- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, V_{DD_HV_BALLAST} must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may case the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

4.4 Voltage monitor electrical characteristics

Table 9. Voltage monitor electrical characteristics

Symbol	Parameter	State	Conditions	Co	nfiguratio	n		Thresho	ld	Unit	
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V	
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V	
	on reset detector		Trimmed			ve	-	-	-	V	
		Rise	Untrimmed				0.980	1.029	1.078	٧	
			Trimmed				-	-	-	٧	
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start	•	_	
d	voltage monitoring,		Trimmed			al	1.325	1.345	1.375	V	
	detecting at	Rise	Untrimmed				Disabled	at Start	•	•	
	device pin		Trimmed				1.345	1.365	1.395	V	
$V_{LVD_LV_PD}$	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V	
2_hot	voltage monitoring,		Trimmed			ve	1.1250	1.1425	1.1600	V	
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V	
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V	
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V	
1_hot (BGFP)	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V	
	detecting on the	Rise	Untrimmed				1.1000	1.140	1.1800	V	
	PD1 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V	
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes I	No	Destructi	1.0800	1.1200	1.1600	V	
0_hot (BGFP)	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V	
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V	
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V	
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V	
	on reset detector		Trimmed			ve	-	-	-	٧	
		Rise	Untrimmed				2.7500	2.9000	3.0500	V	
			Trimmed				-	-	-	V	
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V	
03, 3	low voltage monitoring - low		Trimmed			ve	2.9780	3.0390	3.1000	٧	
	range	Rise	Untrimmed				2.7800	2.9530	3.1250	٧	
			Trimmed				3.0080	3.0690	3.1300	V	
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disable	at Start			
13	low voltage monitoring - high					ve	4.0600	4.151	4.2400	V	
	range	Rise	Trimmed				Disabled	Disabled at Start			
							4.1150	4.2010	4.3000	V	

Table continues on the next page...

- 8. e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM	T _a = 25 °C	_	10	_	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	_	10.5	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	_	11	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 {}^{\circ}C^{2, 2}$	_	_	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	_	0.18	_	mA
		T _a = 85 °C	_	0.60	_	
		T _a = 105 °C	_	1.00		
		T _a = 125 °C ²		_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal
 attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY0	STANDBY with	T _a = 25 °C	_	71	_	μΑ
	8K RAM	T _a = 85 °C	_	125	700	
		T _a = 105 °C	_	195	1225	
		T _a = 125 °C ^{2, 2}	_	314	2100	
STANDBY1	STANDBY with	T _a = 25 °C	_	72	_	μΑ
	64K RAM	T _a = 85 °C	_	140	715	
		T _a = 105 °C	_	225	1275	
		T _a = 125 °C ²	_	358	2250	

Table continues on the next page...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Table 14. Functional Pad AC Specifications @ 3.3 V Range

Symbol	· ·	elay (ns) ¹ I/H>L	Rise/Fall	Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	Min	Max	Min	Max	1 [MSB,LSB
pad_sr_hv		6/6		1.9/1.5	25	11
(output)	2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
(output)	6.4/5	19.5/19.5	3.5/2.5	12/12	200	
	2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
	0.090	1.1	0.035	1.1	asymmetry ²	
	2.9/3.5	12.5/11	1/1	7/6	50	
	11/8	35/31	7.7/5	25/21	200	
	8.3/9.6	45/45	4/3.5	25/25	50	01 ³
	13.5/15	65/65	6.3/6.2	30/30	200	
	13/13	75/75	6.8/6	40/40	50	00 ³
	21/22	100/100	11/11	51/51	200	
pad_i_hv/ pad_sr_hv		2/2		0.5/0.5	0.5	NA
(input) ⁴						

^{1.} As measured from 50% of core side input to Voh/Vol of the output

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.

^{3.} Slew rate control modes

^{4.} Input slope = 2ns

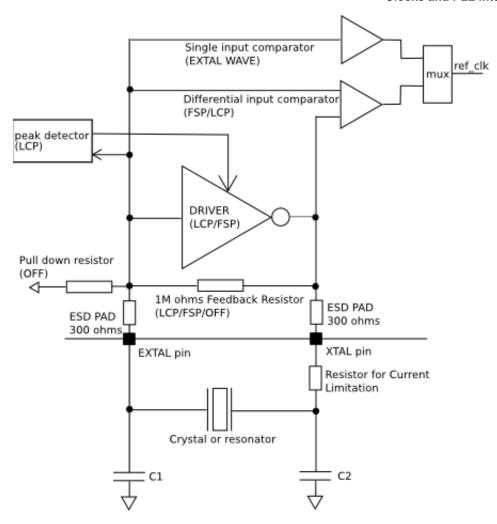


Figure 7. Oscillator connections scheme

Table 23. Main oscillator electrical characteristics

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit	
f _{xoschs}	Oscillator frequency	FSP/LCP		8		40	MHz	
9mxoschs	Driver	LCP			23		mA/V	
	Transconduct ance	FSP			33			
V _{XOSCHS}	Oscillation Amplitude	SCHS Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
			16 MHz		1.0			
			40 MHz	0.8				
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms	
			16 MHz	1	1			
			40 MHz	1	0.5			

Table continues on the next page...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

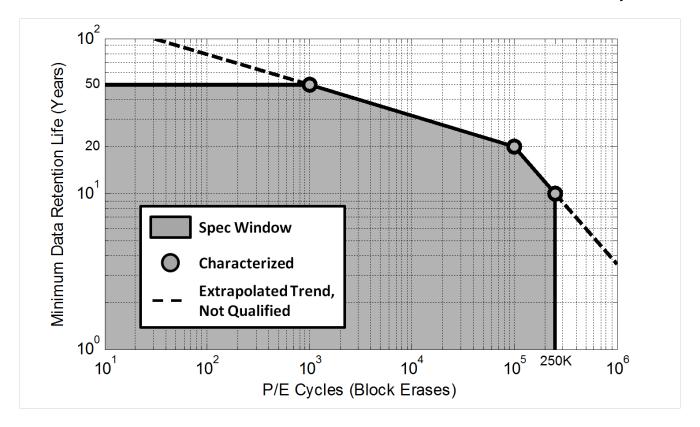
Memory interfaces

Table 31. Flash memory Array Integrity and Margin Read specifications (continued)

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	_	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	_	1,339.5	μs

- 1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

6.3.3 Flash memory module life specifications


Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ^{1, 1}	_	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ^{2, 2}	_	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	_	Years
		Blocks with 100,000 P/E cycles.	20	_	Years
		Blocks with 250,000 P/E cycles.	10	_	Years

- 1. Program and erase supported across standard temperature specs.
- 2. Program and erase supported across standard temperature specs.

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

6.3.5 Flash memory AC timing specifications

Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μѕ
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	_	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs

Table continues on the next page...

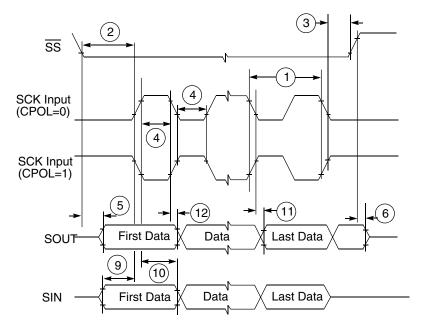


Figure 10. DSPI classic SPI timing — slave, CPHA = 0

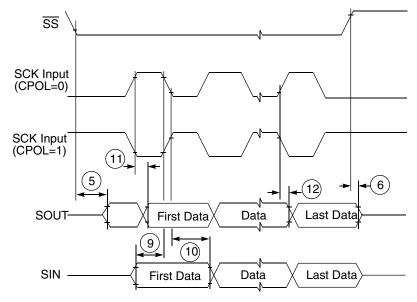


Figure 11. DSPI classic SPI timing — slave, CPHA = 1

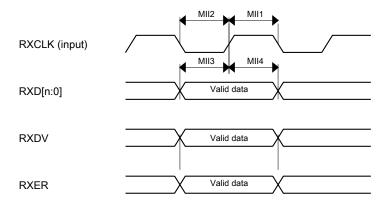


Figure 22. RMII/MII receive signal timing diagram

6.4.3.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
_	EXTAL frequency (RMII input clock RMII_CLK)	_	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

Table 42. RMII signal switching specifications

6.4.4 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

Table 43. Master mode SAI Timing

Table continues on the next page...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Max	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	_	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	_	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	_	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

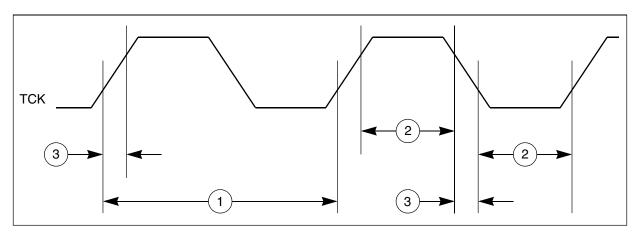


Figure 25. JTAG test clock input timing

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	$R_{\theta JB}$	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{0JC}	Thermal resistance, junction to case	8.4	°C/W	55
_	$\Psi_{ m JT}$	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{ЈВ}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

Reset sequence

68

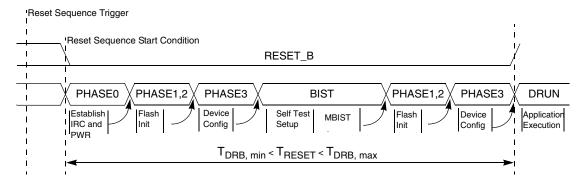


Figure 32. Destructive reset sequence, BIST enabled

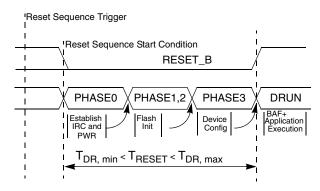


Figure 33. Destructive reset sequence, BIST disabled

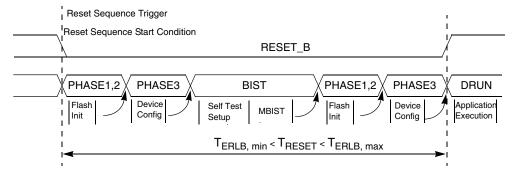


Figure 34. External reset sequence long, BIST enabled

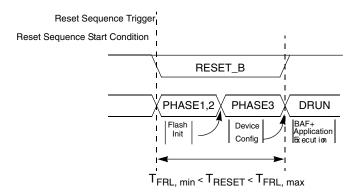


Figure 35. Functional reset sequence long

Table 51. Revision History (continued)

Rev. No. Date	Substantial Changes
Rev. No. Date	Substantial Changes In section: Reset pad electrical characteristics Revised table, Reset electrical characteristics Deleted note, There are some specific ports that supports TTL functionality. These ports are, PB[4], PB[5], PB[6], PB[7], PB[8], PB[9], PD[0], PD[1], PD[2], PD[3], PD[4], PD[5], PD[6], PD[7], PD[8], PD[9], PD[10], and PD[11]. In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W _{NFPORST} In section: Peripheral operating requirements and behaviours Changed section title from Input impedance and ADC accuracy to Input equivalent circuit and ADC conversion characteristics. Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit) Removed table, ADC supply configurations. In section: Analogue Comparator (CMP) electrical specifications Updated 'Max' value of IpoLS Updated 'Min' and 'Max' for V _{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V _H Updated 'Descripton' 'Min' 'Max' od V _H Updated 'Descripton' 'Min' 'Max' od V _H Updated 'Descripton' 'Min' 'Max' of V _H Removed row for I _{DLS} Removed row for V _{CMPOh} and V _{CMPOl} In section: Clocks and PLL interfaces modules In table: Main oscillator electrical characteristics V _{XOSCHS} : Removed values for 4 MHz. T _{XOSCHSSU} : Updated range to 8-40 MHz. In table: 18 MHz RC Oscillator electrical specifications Posc: Updated 'Max' for T _{Startup} and T _{L,J,IT} Removed F _{Untrimmed} row In table: 128 KHz Internal RC oscillator electrical specifications Fosc: Updated 'Temperature dependence' and 'Supply dependence' Max values In table: 128 LHz Internal RC oscillator electrical specifications Removed Tupt (Dosch Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (V _{DD, LV}), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Min' value for Duty Cycle at plicikout Removed 'Min' value for Lock Time in calibration mode.
	 Added 1 Sigma Random Jitter and Total Period Jitter values for Long Term Jitter (Interger and Fractional Mode) rows. In section Flash read wait state and address pipeline control settings In Flash Read Wait State and Address Pipeline Control: Updated APC for 40 MHz.
	Removed section: On-chip peripherals

Table continues on the next page...

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.