E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	-
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5745bfk1avmh2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Block diagram4					
2	Fami	ly compa	rison4			
3	Orde	ring parts				
	3.1	Determi	ning valid orderable parts8			
	3.2	Ordering	g Information9			
4	Gene	eral	9			
	4.1	Absolute	e maximum ratings9			
	4.2	Recom	nended operating conditions11			
	4.3	Voltage	regulator electrical characteristics13			
	4.4	Voltage	monitor electrical characteristics17			
	4.5	Supply	current characteristics18			
	4.6	Electros	tatic discharge (ESD) characteristics22			
	4.7	Electror	nagnetic Compatibility (EMC) specifications23			
5	I/O p	arameter	s23			
	5.1	AC spec	cifications @ 3.3 V Range23			
	5.2	DC elec	trical specifications @ 3.3V Range24			
	5.3	AC spec	cifications @ 5 V Range25			
	5.4	DC elec	trical specifications @ 5 V Range25			
	5.5	Reset p	ad electrical characteristics26			
	5.6	PORST	electrical specifications			
6	Perip	heral ope	erating requirements and behaviours28			
	6.1	Analog.				
		6.1.1	ADC electrical specifications			
		6.1.2	Analog Comparator (CMP) electrical			
			specifications			
	6.2	Clocks a	and PLL interfaces modules34			
		6.2.1	Main oscillator electrical characteristics34			
		6.2.2	32 kHz Oscillator electrical specifications36			
		6.2.3	16 MHz RC Oscillator electrical			
			specifications			
		6.2.4	128 KHz Internal RC oscillator Electrical			
			specifications			
		6.2.5	PLL electrical specifications			
	6.3	Memory	interfaces			
		6.3.1	Flash memory program and erase			
			specifications			

	6.3.2	Flash memory Array Integrity and Margin
		Read specifications
	6.3.3	Flash memory module life specifications40
	6.3.4	Data retention vs program/erase cycles40
	6.3.5	Flash memory AC timing specifications41
	6.3.6	Flash read wait state and address pipeline
		control settings42
6.4	Commu	ication interfaces43
	6.4.1	DSPI timing43
	6.4.2	FlexRay electrical specifications49
		6.4.2.1 FlexRay timing49
		6.4.2.2 TxEN49
		6.4.2.3 TxD50
		6.4.2.4 RxD51
	6.4.3	Ethernet switching specifications52
	6.4.4	SAI electrical specifications53
6.5	Debug s	pecifications55
	6.5.1	JTAG interface timing55
	6.5.2	Nexus timing58
	6.5.3	WKPU/NMI timing60
	6.5.4	External interrupt timing (IRQ pin)61
Ther	mal attribu	tes61
7.1	Thermal	attributes61
Dime	nsions	
8.1	Obtainin	g package dimensions65
Pinou	uts	
9.1	Package	pinouts and signal descriptions
Rese	t sequend	e66
10.1	Reset se	quence66
	10.1.1	Reset sequence duration
	10.1.2	BAF execution duration
	10.1.3	Reset sequence description
Revis	sion Histo	у69
11.1	Revision	History

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Start Address	End Address	Flash block	RWW partition	MPC5744	MPC5745	MPC5746
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	not available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	7	not available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	7	not available	not available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	7	not available	not available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	not available	not available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	not available	not available	not available

Table 2. MPC5746C Family Comparison - NVM Memory Map 1

Table 3. MPC5746C Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW partition	MPC5744B	MPC5744C
				MPC5745B	MPC5745C
				MPC5746B	MPC5746C
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	not available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	not available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	not available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	not available	available

Table 4. MPC5746C Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x4000000	0x40001FFF	8 KB	SRAM0	available	available	available
0x40002000	0x4000FFFF	56 KB	SRAM1	available	available	available
0x40010000	0x4001FFFF	64 KB	SRAM2	available	available	available
0x40020000	0x4002FFFF	64 KB	SRAM3	available	available	available

Table continues on the next page...

3.2 Ordering Information

Example	Code	PC 57	4	6	С	Ş	К0	М	MJ	6	R
·	Qualification Status								1	1	1
	Power Architecture										
	Automotive Platform										
	Core Version										
Flas	sh Size (core dependent)										
	Product										
	Optional fields										
	Fab and mask indicator										
	Temperature spec.										
	Package Code]		
	CPU Frequency										
R = Ta	pe & Reel (blank if Tray)										
	Due due 6 Manual au		-				D -	- 1	0		
Qualification Status	Product version	Fab and i	nask v Sab	versic	on indi	icator	Pa	CKage		ED	
S = Automotive qualified	B = Single core	#(0.1 etc.)) = Ver	sion o	f the		M.	NU = 176 LQFP EP MJ = 256 MAPBGA			
	C = Dual core	#(0,1,etc.) = version of the maskset like rev 0-0N65H				MN = 324 MAPBGA					
PC = Power Architecture		maeneeu,					Μ	H = 10	OMAPB	GA	
Automotive Platform		Temperat	ure sp	bec.			СР	U Fre	quency		
57 = Power Architecture in 55nm	Omtion of tiolds	C = -40.C	to +85	5.C Ta			2 =	- 74 0	nerates	unto	120 MHz
	Optional fields	V = -40.C	to +10)5.C T	a		6-	74 01	nerates	unto	160 MHz
Core Version	Blank = No optional feature	M = -40.C	to +12	25.0	a		0 -		sciales	upto	100 1012
4 = e200z4 Core version (highest	S = HSM (Security Module)										
cores)	F = CAN FD										
,	B = HSM + CAN FD						Sh	ipping	Metho	d	
Flash Memory Size	R = 512K RAM						H =	= lape	and ree		
4 = 1.5 MB	T = HSM + 512K RAM						Dia		lay		
5 = 2 MB	G* = CAN FD + 512K RAM										
6 = 3 MB	H* = HSM + CAN FD + 512K RAM										
	[•] G and H for 5746 B/C only										
Note: Not all part number con	nbinations are available as produ	ction produ	ıct								
		enon prout									

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	_	3.15	3.6	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage		3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	-	-0.1	0.1	V
V _{DD_LV} ^{4, 5}	Core supply voltage	—	1.2	1.32	V
V _{IN1_CMP_REF} ^{6, 7}	Analog Comparator DAC reference voltage	_	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

Table continues on the next page ...

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

Table 8.	Voltage regulator	electrical s	pecifications ((continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{flash_} reg ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{HV_VDD_A}	VDD_HV_A supply capacitor ^{5, 5}	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_B}	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_VDD_C}	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47	_	_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_		0.1	Ohm
t _{SU}	Start-up time with external ballastafter main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	74	_	μs
t _{SU_int}	Start-up time with internal ballast after main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	103	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{f_{p} reg} = 3 \ \mu F$		1.0		μs

- Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
 Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
IDD_HV_ADC_REF ^{10,}	ADC REF Operating current	T _a = 125 °C ⁵		200	400	μA
11, 11		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 105 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
		T _a = 85 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 25 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 3.6 V$				
I _{DD_HV_ADCx} ¹¹	ADC HV Operating current	T _a = 125 °C ⁵	-	1.2	2	mA
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
		T _a = 25 °C	-	1	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
IDD_HV_FLASH ¹²	Flash Operating current during read	T _a = 125 °C ⁵	—	40	45	mA
	access	3.3 V supplies				
		160 MHz frequency				
		T _a = 105 °C	—	40	45	
		3.3 V supplies				
		160 MHz frequency				
		T _a = 85 °C	—	40	45	
		3.3 V supplies				
		160 MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Single e200Z4 core cache disabled @80 MHz, no FlexRay, no ENET, 2 x CAN, 8 LINFlexD, 2 SPI, ADC0 and 1 used constantly, no HSM, Memory: 2M flash, 128K RAM RUN mode, Clocks: FIRC on, XOSC, PLL on, SIRC on for TOD, no 32KHz crystal (TOD runs off SIRC).
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C. In case of internal ballast mode, it is expected that the external ballast is not mounted and BAL_SELECT_INT pin is tied to VDD_HV_A supply on board. Internal ballast can be used for all use cases with current consumption upto 150mA
- 4. The power consumption does not consider the dynamic current of I/Os
- 5. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA of 2s2p board. SeeThermal attributes
- e200Z4 core, 160MHz, cache enabled; e200Z2 core, 80MHz, no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 256K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- e200Z4 core, 120MHz, cache enabled; e200Z2 core, 60MHz; no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 128K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal

- e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM	$T_a = 25 \ ^{\circ}C$	-	10	—	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	—	10.5	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	—	11	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 \ ^{\circ}C^{2, 2}$	—	—	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	—	0.18	—	mA
		T _a = 85 °C	—	0.60	_	
		T _a = 105 °C	—	1.00	_	
		$T_{a} = 125 \text{ °C }^{2}$	—	_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
STANDBY0	STANDBY with	T _a = 25 °C	—	71	—	μA
	8K RAM	T _a = 85 °C	_	125	700	
		T _a = 105 °C	—	195	1225	
		$T_a = 125 \text{ °C}^{2,2}$	—	314	2100	
STANDBY1	STANDBY with	T _a = 25 °C	_	72	_	μA
	64K RAM	T _a = 85 °C	—	140	715	
		T _a = 105 °C	—	225	1275	
		$T_{a} = 125 \text{ °C}^{2}$	—	358	2250	

Table continues on the next page...

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Prop. Delay (ns) ¹ L>H/H>L		Rise/Fall Edge (ns)		Delay (ns) ¹ Rise/Fall Edge (>H/H>L		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
Min	Max	Min	Max		MSB,LSB		
	6/6		1.9/1.5	25	11		
2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50			
6.4/5	19.5/19.5	3.5/2.5	12/12	200			
2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10		
0.090	1.1	0.035	1.1	asymmetry ²			
2.9/3.5	12.5/11	1/1	7/6	50			
11/8	35/31	7.7/5	25/21	200			
8.3/9.6	45/45	4/3.5	25/25	50	01 ³		
13.5/15	65/65	6.3/6.2	30/30	200			
13/13	75/75	6.8/6	40/40	50	00 ³		
21/22	100/100	11/11	51/51	200			
	2/2		0.5/0.5	0.5	NA		
	Prop. De L>H Min 2.5/2.5 6.4/5 2.2/2.5 0.090 2.9/3.5 11/8 8.3/9.6 13.5/15 13/13 21/22	Prop. Delay (ns) ¹ L>H/H>L Min Max 6/6 2.5/2.5 8.25/7.5 6.4/5 19.5/19.5 2.2/2.5 8/8 0.090 1.1 2.9/3.5 12.5/11 11/8 35/31 8.3/9.6 45/45 13.5/15 65/65 13/13 75/75 21/22 100/100 2/2 2/2	Prop. Delay (ns) ¹ Rise/Fall L>H/H>L Min Min Max Min 6/6	Prop. Delay (ns)' L>H/H>LRise/Fall Edge (ns)MinMaxMinMax $6/6$ 1.9/1.5 $2.5/2.5$ $8.25/7.5$ $0.8/0.6$ $3.25/3$ $6.4/5$ $19.5/19.5$ $3.5/2.5$ $12/12$ $2.2/2.5$ $8/8$ $0.55/0.5$ $3.9/3.5$ 0.090 1.1 0.035 1.1 $2.9/3.5$ $12.5/11$ $1/1$ $7/6$ $11/8$ $35/31$ $7.7/5$ $25/21$ $8.3/9.6$ $45/45$ $4/3.5$ $25/25$ $13.5/15$ $65/65$ $6.3/6.2$ $30/30$ $13/13$ $75/75$ $6.8/6$ $40/40$ $21/22$ $100/100$ $11/11$ $51/51$ $2/2$ $2/2$ $0.5/0.5$	Prop. Delay (ns) ' L>H/H>LRise/Fall Edge (ns) Rise/Fall Edge (ns)Drive Load (pF)MinMaxMinMax $6/6$ 1.9/1.5252.5/2.58.25/7.50.8/0.63.25/350 $6.4/5$ 19.5/19.53.5/2.512/122002.2/2.58/80.55/0.53.9/3.5250.0901.10.0351.1asymmetry ² 2.9/3.512.5/111/17/65011/835/317.7/525/212008.3/9.645/454/3.525/255013.5/1565/656.3/6.230/3020013/1375/756.8/640/405021/22100/10011/1151/51200		

Table 14. Functional Pad AC Specifications @ 3.3 V Range

1. As measured from 50% of core side input to Voh/Vol of the output

- This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.
- 3. Slew rate control modes
- 4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

I/O parameters

Table 18.	Functional reset	pad electrical s	pecifications
-----------	------------------	------------------	---------------

Symbol	Parameter	Conditions	Value		e	Unit
			Min	Тур	Мах	
V _{IH}	CMOS Input Buffer High Voltage	—	0.65*V _D	_	V _{DD_HV_x}	V
			D_HV_x		+0.3	
VIL	CMOS Input Buffer Low Voltage	—	V _{DD_HV_}	—	0.35*V _{DD_HV}	V
			_x -0.3		_x	

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
t _{conv}	Conversion time ⁴	80 MHz	550	—	—	ns
t _{total_conv}	Total Conversion time tsample + tconv (for standard channels)	80 MHz	1			μs
	Total Conversion time tsample + tconv (for extended channels)		1.5	_		
C _S ⁵	ADC input sampling capacitance	—	_	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—		—	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	_	—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_	—	875	Ω
R _{AD} ⁵	Internal resistance of analog source	_	—	_	825	Ω
INL	Integral non-linearity	—	-2	—	2	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-4	—	4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C		—	2500	nA
(pad going to one	Max positive/negative injection		-5	—	5	mA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}		5	250	nA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

 Table 21. ADC conversion characteristics (for 10-bit) (continued)

- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- 4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 65
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

No	Symbol	Parameter	Conditions	High Speed Mode		low Spe	ed mode	Unit
				Min	Мах	Min	Мах	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	_	ns
			Slave	4	—	6	—	
			Master (MTFE = 1, CPHA = 0)	-2	—	10 ¹	—	
			Master (MTFE = 1, CPHA = 1)	-2		-2	—	

Table 35. DSPI electrical specifications (continued)

1. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 35

Table 36.	Continuous	SCK	timing
-----------	------------	-----	--------

Spec	Characteristics	Pad Drive/Load	Value	
			Min	Мах
tSCK	SCK cycle timing	strong/50 pF	100 ns	-
-	PCS valid after SCK	strong/50 pF	-	15 ns
-	PCS valid after SCK	strong/50 pF	-4 ns	-

Table 37.	DSPI high	speed	mode	l/Os
-----------	-----------	-------	------	------

DSPI	High speed SCK	High speed SIN	High speed SOUT
DSPI2	GPIO[78]	GPIO[76]	GPIO[77]
DSPI3	GPIO[100]	GPIO[101]	GPIO[98]
SPI1	GPIO[173]	GPIO[175]	GPIO[176]
SPI2	GPIO[79]	GPIO[110]	GPIO[111]

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF.

2. For $3.3 \text{ V} \pm 10\%$ operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 RxD

Table 40.	RxD	input	characteristic
-----------	-----	-------	----------------

Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

Debug specifications

Figure 26. JTAG test access port timing

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 28. Nexus output timing

Figure 29. Nexus EVTI Input Pulse Width

Debug specifications

Figure 30. Nexus TDI, TMS, TDO timing

6.5.3 WKPU/NMI timing

Table 47. WKPU/NMI glitch filter

No.	Symbol	Parameter	Min	Тур	Max	Unit
1	W _{FNMI}	NMI pulse width that is rejected	—	—	20	ns
2	W _{NFNMI} D	NMI pulse width that is passed	400	_	—	ns

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	55
_	Ψ _{JT}	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51. R	levision	History (continued)
-------------	----------	-----------	------------

Rev. No.	Date	Substantial Changes
Rev 2	7 August 2015	In features:
	-	Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
		flash programming via a serial link (SCI)
		Updated FlexCAN3 with FD support
		Updated number of STMs to two.
		 In Diock diagram. Undated SRAM size from 128 KB to 256 KB
		In Family Comparison:
		 Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC5746C Family Comparison table.
		 In Ordering parts: Undated ordering parts diagram to include 100 MAPBGA information and optional
		fields.
		In table: Absolute maximum ratings
		Removed entry: 'V _{SS_HV} '
		 Added spec for 'V_{DD12}'
		Updated 'Max' column for 'V _{INA} '
		 Opdated toothole for V_{DD_HV_ADC1_REF}. Added foothote to 'Conditions'. All voltages are referred to V_{oo} we unless.
		otherwise specified
		 Removed footnote from 'Max', Absolute maximum voltages are currently
		maximum burn-in voltages. Absolute maximum specifications for device stress
		have not yet been determined.
		In section: Recommended operating conditions
		 Added opening text: "I ne following table describes the operating conditions " Added note: "Very ways and Very ways are all"
		 In table: Becommended operating conditions (VDD, HV x = 3.3 V) and
		(VDD HV $x = 5$ V)
		 Added footnote to 'Conditions' cloumn, (All voltages are referred to V_{SS HV}
		unless otherwise specified).
		Updated footnote for 'Min' column to Device will be functional down (and
		electrical specifications as per various datasheet parameters will be
		guaranteed) to the point where one of the LVD/HVD resets the device.
		 Bemoved footnote for 'Vpp HV A', 'Vpp HV B', and 'Vpp HV C' entry and
		updated the parameter column.
		 Removed entry : 'V_{SS HV}'
		 Updated 'Parameter' column for 'V_{DD_HV_FLA}', 'V_{DD_HV_ADC1_REF}', 'V_{DD_LV}'
		Updated 'Min' column for 'V _{DD_HV_ADC0} ' 'V _{DD_HV_ADC1} '
		 Updated 'Parameter' 'Min' 'Max' columns for 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC1}' Updated footpote for 'V_{SS_WV} to V_{SS_WV} pips should never be
		grounded (through a small impedance). If these are not driven, they should
		only be left floating.
		Removed row for symbol 'V _{SS_LV} '
		 Removed footnote from Max column of V_{DD_HV_ADC0} and V_{DD_HV_ADC1}, (PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
		$V_{DD_HV_B}$ domain hence $V_{DD_HV_ADC1}$ should be within ±100 mV of
		 v_{DD_HV_B} when these channels are used for ADU_1). In table: Becommended operating conditions (V₋₁,, -3.3 V)
		• Removed footnote from V_{IN1} CMP REF, (Only applicable when supplying
		from external source).
		 In table: Recommended operating conditions (V_{DD_HV_x} = 5 V) Added spec for 'V_{IN1_CMP_REF}' and corresponding footnotes.

Table continues on the next page ...