

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz, 160MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	129
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5745cfk1amku6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

General

- 5. 1. For VDD_HV_x, 1µf on each side of the chip
 - a. 0.1 μf close to each VDD/VSS pin pair.
 - b. 10 μf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
 amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
 specified by CFP_REG parameter
- 6. Only applicable to ADC1
- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, $V_{DD_HV_BALLAST}$ must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may case the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

General

Symbol	Parameter	State	Conditions	Configuration				Unit		
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled	at Start		
2_cold	voltage monitoring,		Trimmed	trimmed		al	1.1400	1.1550	1.1750	V
	detecting at the	the Rise	Untrimmed				Disabled at Start			
	device pin		Trimmed				1.1600	1.1750	1.1950	V

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	—	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page ...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	—	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		$T_a = 105 \ ^{\circ}C$	—	255	1350	
		$T_a = 125 \ ^{\circ}C^2$	—	396	2600	
STANDBY3	STANDBY with	$T_a = 25 \text{ °C}$	—	80	_	μA
	256K RAM	T _a = 85 °C	—	180	800	
		$T_a = 105 \ ^{\circ}C$	—	290	1425]
		$T_a = 125 \ ^{\circ}C^2$	—	465	2900	1
STANDBY3	FIRC ON	$T_a = 25 \text{ °C}$	_	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

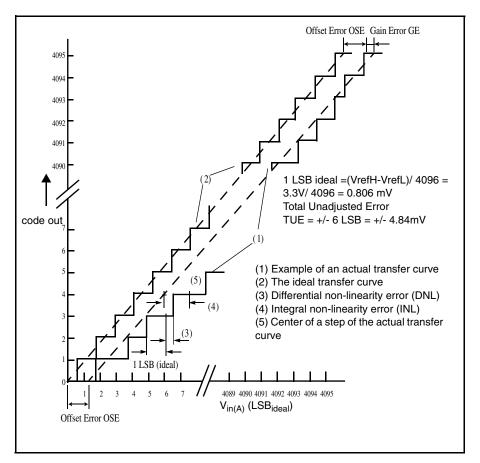


Figure 5. ADC characteristics and error definitions

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)		_	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	-	V _{IN1_CMP_RE}	V
V _{AIO}	Analog input offset voltage ^{1, 1}	-47	_	47	mV
V _H	Analog comparator hysteresis ^{2, 2}	_	1	25	mV
	 CR0[HYSTCTR] = 00 	_	20	50	mV
	 CR0[HYSTCTR] = 01 	_	40	70	mV
	 CR0[HYSTCTR] = 10 	_	60	105	mV
	• CR0[HYSTCTR] = 11				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	-	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	—	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	—	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit supply current		16 MHz		2.2		
			40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger		Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value		Unit	
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		—	—	1.5	%
T _{LTJIT}	Long term jitter		—	—	0.2	%

Symbol	Characteristic ¹	Typ ²		tory nming ^{3, 4}	F	Field Update		Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifeti	Lifetime Max ⁶	
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	—	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	—	ms

Table 30. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

3. Conditions: \leq 150 cycles, nominal voltage.

- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	-	_	2048 x Tperiod x Nread	_

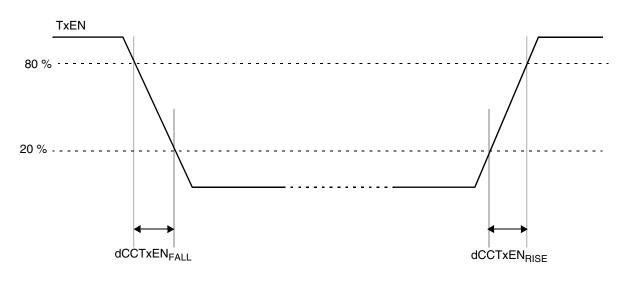
Table continues on the next page ...

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spo	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	7
1	t _{scк}	DSPI cycle	Master (MTFE = 0)	25	_	50	_	ns
		time	Slave (MTFE = 0)	40	—	60	_	
2	tcsc	PCS to SCK delay		16	—	_	-	ns
3	t _{ASC}	After SCK delay	_	16	—	—	-	ns
4	t _{SDC}	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	—	-	ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	_	10	—	_	ns
7	t _{PCSC}	PCSx to PCSS time	_	13	—	—	_	ns
8	t _{PASC}	PCSS to PCSx time		13	—	_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	—	20	_	ns
		time for inputs	Slave	2	—	2	_	
		inputs	Master (MTFE = 1, CPHA = 0)	15	—	8 ^{1, 1}	_	
			Master (MTFE = 1, CPHA = 1)	15	—	20	—	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5		ns
		time for inputs	Slave	4	—	4	_	
		inputs	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	—	-5	-	
11	t _{SUO}	Data valid	Master (MTFE = 0)	_	NA	—	4	ns
		(after SCK edge)	Slave	_	15	_	23	
		euge)	Master (MTFE = 1, CPHA = 0)	—	4	—	16 ¹	
			Master (MTFE = 1, CPHA = 1)		4	_	4	1


Table continues on the next page...

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.2 TxEN

Figure 17. TxEN signal

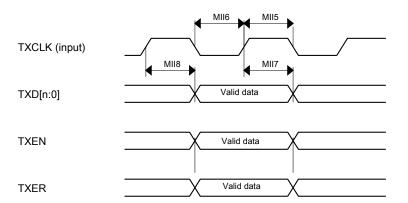
Table 38.	TxEN output	characteristics ¹
-----------	-------------	------------------------------

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	—	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge		25	ns

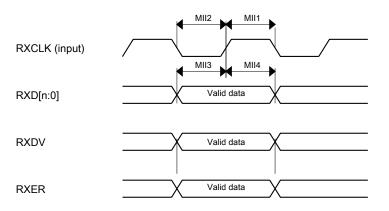
1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = -40 oC / 150 oC.

6.4.3 Ethernet switching specifications


The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.4.3.1 MII signal switching specifications


The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

Symbol	Description	Min.	Max.	Unit
—	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5		ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	—	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid		25	ns

Table 41. MII signal switching specifications

Figure 21. RMII/MII transmit signal timing diagram

Figure 22. RMII/MII receive signal timing diagram

6.4.3.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

 Table 42. RMII signal switching specifications

6.4.4 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

no	Parameter	Va	lue	Unit
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns

Table 43. Master mode SAI Timing

Table continues on the next page...

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Max	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15		ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

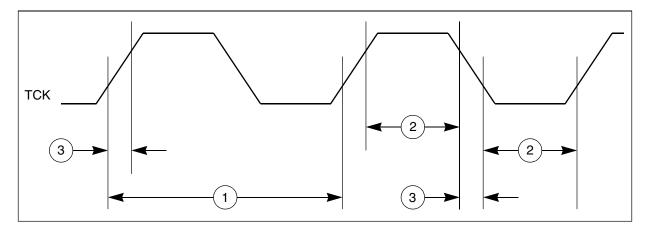


Figure 25. JTAG test clock input timing

Debug specifications

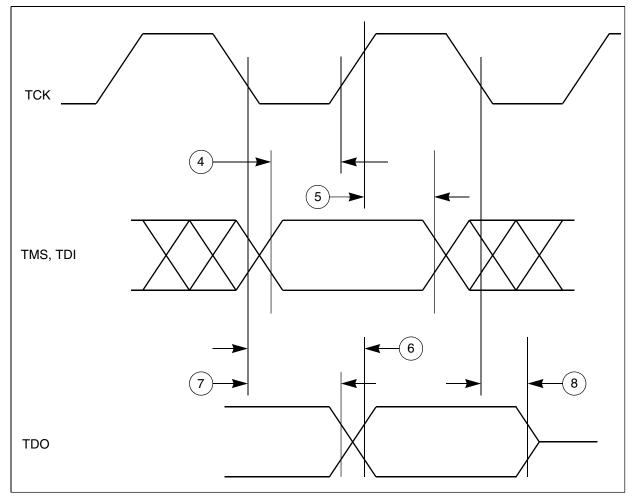


Figure 26. JTAG test access port timing

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Мах	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid		0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

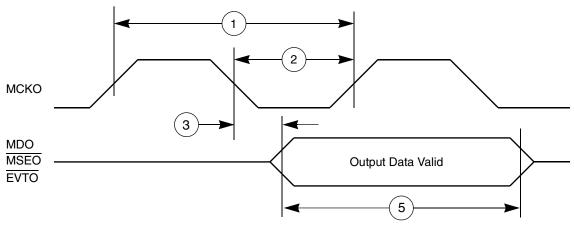


Figure 28. Nexus output timing

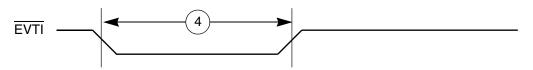


Figure 29. Nexus EVTI Input Pulse Width

Thermal attributes

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
-	R _{θJC}	Thermal resistance, junction to case	7.9	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
_	R _{0JB_CSB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	9.0	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50.9	°C/W	1, 21,2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	27.0	°C/W	1,2,33
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.0	°C/W	1,3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	22.2	°C/W	1,3

Table continues on the next page ...

Pinouts

Package	NXP Document Number
176-pin LQFP-EP	98ASA00698D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

10.1 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1.1 Reset sequence duration

Table 49 specifies the reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter		T _{Reset}		Unit
			Min	Тур 1, 1	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	6.2	7.3	-	ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	110	182	-	us
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	6.2	7.3	-	ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	110	182	-	us
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	7	9	-	us

Table 49. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

Rev. No.	Date	Substantial Changes
		 In section: Reset pad electrical characteristics Revised table, Reset electrical characteristics Deleted note, There are some specific ports that supports TTL functionality. These ports are, PB[4], PB[5], PB[6], PB[7], PB[8], PB[9], PD[0], PD[1], PD[2], PD[3], PD[4], PD[5], PD[6], PD[7], PD[8], PD[9], PD[10], and PD[11]. In section: PORST electrical specifications In table: PORST electrical specifications Updated 'Min' value for W_{NFPORST}
		 In section: Peripheral operating requirements and behaviours Changed section title from Input impedance and ADC accuracy to Input equivalent circuit and ADC conversion characteristics. Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit) Removed table, ADC supply configurations.
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for t_{DHS} Added row for t_{DLS} Removed row for V_{CMPOh} and V_{CMPOI}
		 In section: Clocks and PLL interfaces modules In table: Main oscillator electrical characteristics V_{XOSCHS}: Removed values for 4 MHz. T_{XOSCHSSU}: Updated range to 8-40 MHz. In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' for T_{startup} and T_{LTJIT} Removed F_{Untrimmed} row In table: 128 KHz Internal RC oscillator electrical specifications Fosc: Removed Uncaliberated 'Condition' and updated 'Min', 'Typ', and 'Max' for Caliberated condition Fosc: Updated 'Temperature dependence' and 'Supply dependence' Max values In table: PLL electrical specifications Removed entries for Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (V_{DD_LV}), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value for Duty Cycle at pllclkout Removed 'Typ' value for Duty Cycle at pllclkout Removed 'Min' value for Lock Time in calibration mode.
		Jitter (Interger and Fractional Mode) rows. • In section Flash read wait state and address pipeline control settings
		In Flash Read Wait State and Address Pipeline Control: Updated APC for 40 MHz.
		Removed section: On-chip peripherals

Table 51. Revision History (continued)

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
Rev 3	2 March 2016	In section, Recommended operating conditions
		Added a new Note
		In section, Voltage regulator electrical characteristics
		 In table, Voltage regulator electrical specifications:
		 Added a new row for C_{HV_VDD_B} Added a fastrate an V
		 Added a footnote on V_{DD_HV_BALLAST} Added a new Note at the end of this section
		In section, Voltage monitor electrical characteristics
		 In table, Voltage monitor electrical characteristics: Removed "V_{LVD FLASH}" and "V_{LVD FLASH} during low power mode using
		LPBG as reference" rows
		 Updated Fall and Rise trimmed Minimum values for V_{HVD_LV_cold}
		In section, Supply current characteristics
		In table, Current consumption characteristics:
		 Updated the footnote mentioned in the Condition column of I_{DD_STOP} row
		Updated all TBD values In table Law Power Unit (LBL) Current consumption above staristics:
		 In table, Low Power Unit (LPU) Current consumption characteristics: Updated the typical value of LPU_STOP to 0.18 mA
		Updated all TBD values
		 In table, STANDBY Current consumption characteristics:
		Updated all TBD values
		In section, AC specifications @ 3.3 V Range
		In table, Functional Pad AC Specifications @ 3.3 V Range:
		Updated Rise/Fall Edge values
		In section, DC electrical specifications @ 3.3V Range
		In table, DC electrical specifications @ 3.3V Range:
		 Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, AC specifications @ 5 V Range
		In table, Functional Pad AC Specifications @ 5 V Range:
		Updated Rise/Fall Edge values
		 In section, DC electrical specifications @ 5 V Range
		In table, DC electrical specifications @ 5 V Range:
		 Updated Min and Max values for Pull_Ioh and Pull_Iol rows Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, Reset pad electrical characteristics
		 In table, Functional reset pad electrical specifications: Updated parameter column for V_{IH}, V_{IL} and V_{HYS} rows
		• Updated Min and Max values for V_{IH} and V_{IL} rows
		 In section, PORST electrical specifications In table, PORST electrical specifications:
		 Updated Unit and Min/Max values for V_{IH} and V_{IL} rows
		 In section, input equivalent size it and ADC conversion sharestaristics
		 In section, Input equivalent circuit and ADC conversion characteristics In table, ADC conversion characteristics (for 12-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		In table, ADC conversion characteristics (for 10-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		In section, Analog Comparator (CMP) electrical specifications
		 In table, Comparator and 6-bit DAC electrical specifications:
	MPC57	• Updated Min and Max values for Valo to ±47 mV 46C Microcontroller Datasneet Data Sheet, Rev. 5.1, 05/2017.
74		NXP Semiconductors
		In section, Main oscillator electrical characteristics

Revision History

Rev. No.	Date	Substantial Changes
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes.
		 In AC Specifications@5V section, added two notes.
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table.
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table.
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us.
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table.

Table 51. Revision History (continued)