

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore Processore20024Core Size32-Bit Single-CoreSped120MHzConnectivityCANbus, Ethernet, FlexRay, I°C, LINbus, SPIProjenarisDMA, I°S, POR, WDTNumber of I/O129Program Memory SizeMB (SM x 8)PROM Size64K x 8RAM Size04K x 8Voltage - Supply (Vcc/Vdb)315V ~ 5.5VData ConvertersAND 36x10b, 16x12bOperating Temperature-40°C ~ 105°C (TA)Mounting Type1.9°C ~ 105°C (TA)Prokage / Case316-QIP Exposed PadSupplier Device Package76-LQF Package / CaseProchase URL1.6°LP Exposed PadPurchase URLhttps://www.exfl.com/product-detail/nzp-semiconductors/spC5746bftAutvu2		
Core Size32-Bit Single-CoreSpeed120MHzConnectivityCANbus, Ethernet, FlexRay, I²C, LINbus, SPIPeripheralsDMA, I²S, POR, WDTNumber of I/O129Program Memory Size3MB (3M x 8)Program Memory TypeFLASHEEPROM Size64K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature4.0°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadNon to the Det Met Met Met Met Met Met Met Met Met M	Product Status	Active
Speed120MHzConnectivityCANbus, Ethernet, FlexRay, I²C, LINbus, SPIPeripheralsDMA, I²S, POR, WDTNumber of I/O129Program Memory Size3MB (3M x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator Type-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed Pad	Core Processor	e200z4
ConnectivityCANbus, Ethernet, FlexRay, I ² C, LINbus, SPIPeripheralsDMA, I ² S, POR, WDTNumber of I/O129Program Memory Size3MB (3M x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Core Size	32-Bit Single-Core
PeripheralsDMA, I²S, POR, WDTNumber of I/O129Program Memory Size3MB (3M x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed Pad	Speed	120MHz
Number of I/O129Program Memory Size3MB (3M × 8)Program Memory TypeFLASHEEPROM Size64K × 8RAM Size384K × 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed Pad	Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Program Memory Size3MB (3M x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Peripherals	DMA, I ² S, POR, WDT
Program Memory TypeFLASHEEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed Pad	Number of I/O	129
EEPROM Size64K x 8RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Program Memory Size	3MB (3M × 8)
RAM Size384K x 8Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3.15V ~ 5.5VData ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	EEPROM Size	64K x 8
Data ConvertersA/D 36x10b, 16x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	RAM Size	384K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 176-LQFP Exposed Pad Supplier Device Package 176-LQFP (24x24)	Data Converters	A/D 36x10b, 16x12b
Mounting TypeSurface MountPackage / Case176-LQFP Exposed PadSupplier Device Package176-LQFP (24x24)	Oscillator Type	Internal
Package / Case 176-LQFP Exposed Pad Supplier Device Package 176-LQFP (24x24)	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 176-LQFP (24x24)	Mounting Type	Surface Mount
	Package / Case	176-LQFP Exposed Pad
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746bfk1avku2	Supplier Device Package	176-LQFP (24x24)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746bfk1avku2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C			
l ² C	4	4	4		4				
SAI/I ² S	3	3	3		3				
FXOSC			8 - 40) MHz					
SXOSC			32	KHz					
FIRC			16	MHz					
SIRC			128	KHz					
FMPLL				1					
Low Power Unit (LPU)			Y	es					
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB				
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1	1					
CRC		1							
MEMU			2	2					
STCU2				1					
HSM-v2 (security)			Opti	onal					
Censorship			Y	es					
FCCU				1					
Safety level			Specific functions	ASIL-B certifiable					
User MBIST			Y	es					
I/O Retention in Standby			Y	es					
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO					
Debug			JTA	GC,					
			cJT	AG					
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))				
		Z2 N3+ (C	Only available on 3	24BGA (developm	ent only))				
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP			
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,			
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)			
						100 BGA			

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

- 2. Based on 125°C ambient operating temperature and subject to full device characterization.
- 3. Contact NXP representative for part number
- 4. Additional SWT included when HSM option selected
- 5. See device datasheet and reference manual for information on to timer channel configuration and functions.
- 6. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

3.2 Ordering Information

Example	Code	PC 57	4	6	С	Ş	К0	М	MJ	6	R
·	Qualification Status								1	1	1
	Power Architecture										
	Automotive Platform										
	Core Version										
Flas	sh Size (core dependent)										
	Product										
	Optional fields										
	Fab and mask indicator										
	Temperature spec.										
	Package Code]		
	CPU Frequency										
R = Ta	pe & Reel (blank if Tray)										
	Due due 6 Manual au		-				D -	- 1	0		
Qualification Status	Product Version	Fab and I K = TSMC		versic	on indi	icator		-	Code	ED	
P = Engineering samples S = Automotive qualified	B = Single core C = Dual core	K = TSMC FabKU = 176 LQFP EP#(0,1,etc.) = Version of theMJ = 256 MAPBGA									
	C = Dual core	maskset,							4 MAPE		
PC = Power Architecture		maeneeu,					Μ	H = 10	OMAPB	GA	
Automotive Platform		Temperat	ure sp	bec.			СР	U Fre	quency		
57 = Power Architecture in 55nm	Omtion of tiolds	C = -40.C								unto	120 MHz
	Optional fields	V = -40.C								•	160 MHz
Core Version	Blank = No optional feature	M = -40.C	to +12	25.0	a		0 -		sciales	upto	100 1012
4 = e200z4 Core Version (highest core version in the case of multiple	S = HSM (Security Module)										
cores)	F = CAN FD										
,	B = HSM + CAN FD								Metho		
Flash Memory Size	R = 512K RAM							= Tape ink = T	and ree		
4 = 1.5 MB	T = HSM + 512K RAM						Dia		lay		
5 = 2 MB	G* = CAN FD + 512K RAM										
6 = 3 MB	H* = HSM + CAN FD + 512K RAM										
	* G and H for 5746 B/C only										
Note: Not all part number con	nbinations are available as produ	ction produ	ıct								
		enon prout									

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}{}^{2, 3} \end{array}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷	_	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage	—	-0.3	6	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	3.3 V to 5.5V ADC supply voltage	_	-0.3	6.0	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	3.3V to 5.5V ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage	_	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V_{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{ramp}	Supply ramp rate	_	0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

General

Symbol	Parameter	State	Conditions	Configuration			Threshold U			Unit	
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V	
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled	isabled at Start			
2_cold	2_cold voltage monitoring,		Trimmed			al	1.1400	1.1550	1.1750	V	
		Rise	Untrimmed				Disabled	at Start			
	device pin		Trimmed				1.1600	1.1750	1.1950	V	

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	_	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page ...

- e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
LPU_RUN	with 256K RAM	$T_a = 25 \text{ °C}$	-	10	—	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	—	10.5	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	—	11	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 \ ^{\circ}C^{2, 2}$	—	—	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	$T_a = 25 \text{ °C}$	—	0.18	—	mA
		T _a = 85 °C	—	0.60	—	
		T _a = 105 °C	—	1.00		
		$T_{a} = 125 \ ^{\circ}C^{2}$	—	_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY0	STANDBY with	T _a = 25 °C	—	71	—	μA
	8K RAM	T _a = 85 °C	—	125	700	
		T _a = 105 °C	—	195	1225	
		$T_a = 125 \text{ °C}^{2, 2}$	—	314	2100	
STANDBY1	STANDBY with	$T_a = 25 \text{ °C}$	—	72		μA
	64K RAM	T _a = 85 °C	—	140	715	
		T _a = 105 °C	—	225	1275	
		$T_a = 125 \ ^{\circ}C^2$	—	358	2250	1

Table continues on the next page...

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Value			
			Min	Тур	Max		
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	_	mV	
V _{DD_POR}	Minimum supply for strong pull-down activation	-	—	_	1.2	V	
I _{OL_R}	Strong pull-down current ^{1, 1}	$\label{eq:Device under power-on reset} $V_{DD_HV_A} = V_{DD_POR}$$V_{OL} = 0.35^*V_{DD_HV_A}$$$	0.2	_		mA	
		Device under power-on reset $V_{DD_{HV}A} = V_{DD_{POR}}$ $V_{OL} = 0.35^*V_{DD_{HV}IO}$	11	_		mA	
W _{FRST}	RESET input filtered pulse	—	_	_	500	ns	
W _{NFRST}	RESET input not filtered pulse	-	2000	—	_	ns	
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	—	82	μA	

 Table 18.
 Functional reset pad electrical specifications (continued)

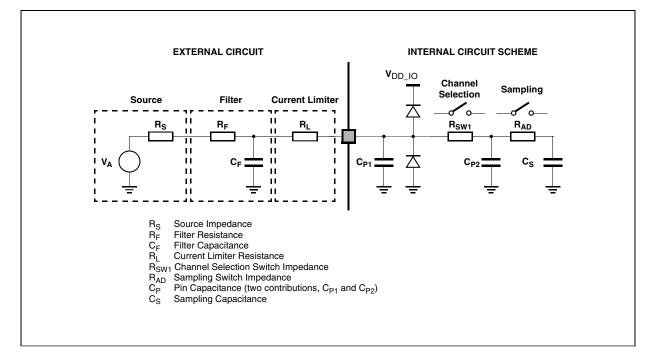
1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value			
		Min	Тур	Max		
W _{FPORST}	PORST input filtered pulse		—	200	ns	
WNFPORST	PORST input not filtered pulse	1000	—	_	ns	
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	_	V	
V _{IL}	Input low level	-	_	0.35 x V _{DD_HV_A}	V	

6 Peripheral operating requirements and behaviours


6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—		1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_		
C _S ^{6, 6}	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	—	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	—	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	—	_	875	Ω

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
t _{conv}	Conversion time ⁴	80 MHz	550		—	ns
t _{total_conv}	Total Conversion time tsample + tconv (for standard channels)	80 MHz	1	_		μs
	Total Conversion time tsample + tconv (for extended channels)		1.5	_	_	
C _S ⁵	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁵	ADC input pin capacitance 1	—	_	—	5	pF
C _{P2} ⁵	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁵	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	_	_	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_	_	875	Ω
R _{AD} ⁵	Internal resistance of analog source	—	—	_	825	Ω
INL	Integral non-linearity	—	-2	_	2	LSB
DNL	Differential non-linearity	—	-1		1	LSB
OFS	Offset error	—	-4		4	LSB
GNE	Gain error	—	-4	—	4	LSB
ADC Analog Pad	Max leakage (standard channel)	150 °C	_	_	2500	nA
(pad going to one ADC)	Max positive/negative injection		-5	_	5	mA
ADO)	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
TUE _{standard/extended}	Total unadjusted error for standard	Without current injection	-4	+/-3	4	LSB
channels	channels	With current injection ⁶		+/-4		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

 Table 21. ADC conversion characteristics (for 10-bit) (continued)

- Active ADC Input, VinA < [min(ADC_ADV, IO_Supply_A,B,C)]. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions' for required relation between IO_supply_A, B, C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. See Figure 65
- 6. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)		_	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	-	V _{IN1_CMP_RE}	V
V _{AIO}	Analog input offset voltage ^{1, 1}	-47	_	47	mV
V _H Analog comparator hysteresis ^{2, 2}		_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	 CR0[HYSTCTR] = 01 	_	40	70	mV
	 CR0[HYSTCTR] = 10 	_	60	105	mV
	• CR0[HYSTCTR] = 11				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	-	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	—	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	—	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)			- I	
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit supply current		16 MHz		2.2		
			40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger		Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		—	—	1.5	%
T _{LTJIT}	Long term jitter		—	—	0.2	%

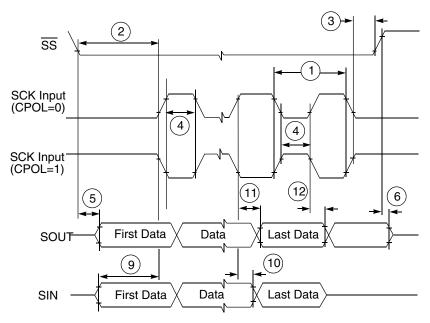


Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

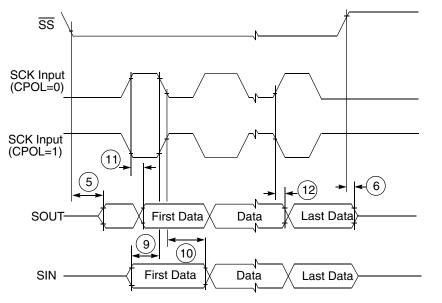


Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

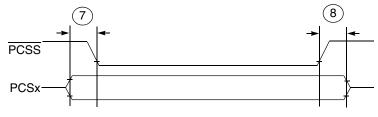


Figure 16. DSPI PCS strobe (PCSS) timing

No	Parameter	Value		Unit
		Min Max		
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	-	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17	SAI_RXD setup before SAI_BCLK	10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Table 44. Slave mode SAI Timing (continued)

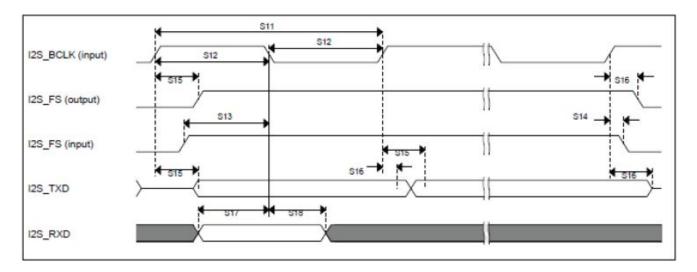


Figure 24. Slave mode SAI Timing

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 45. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Мах	Unit
1	t _{JCYC}	TCK Cycle Time ^{2, 2}	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)		3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ^{3, 3}	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0	_	ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance		15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	—	600 ^{4, 4}	ns

Table continues on the next page ...

Debug specifications

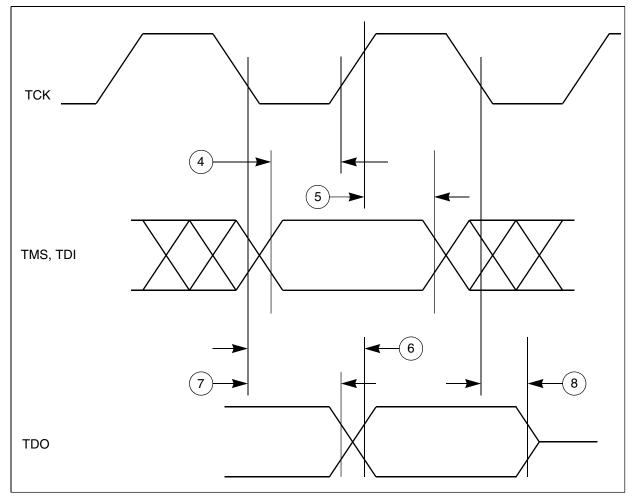


Figure 26. JTAG test access port timing

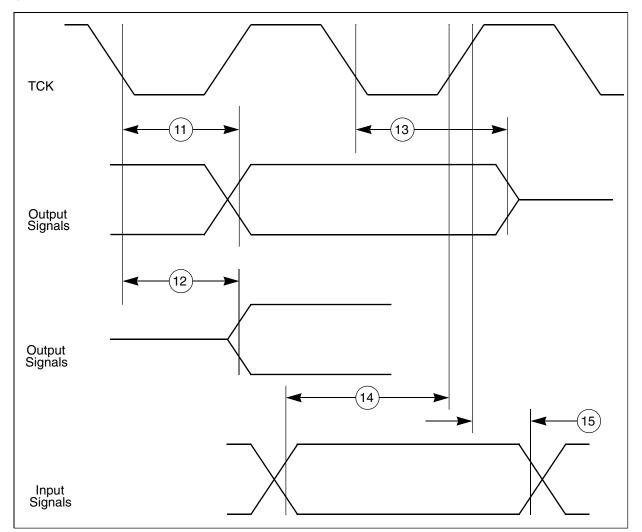


Figure 27. JTAG boundary scan timing

6.5.2 Nexus timing

Table 46. Nexus debug port timing 1

No.	Symbol	Parameter	Condition s	Min	Max	Unit
1	t _{MCYC}	MCKO Cycle Time	—	15.6	_	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	_	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	_	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time	—	8	_	ns

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
_	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
	R _{0JB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
-	R _{θJC}	Thermal resistance, junction to case	7.9	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
_	R _{0JB_CSB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	9.0	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50.9	°C/W	1, 21,2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	27.0	°C/W	1,2,33
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.0	°C/W	1,3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	22.2	°C/W	1,3

Table continues on the next page ...

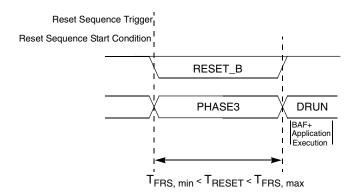


Figure 36. Functional reset sequence short

The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

11.1 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev 1	14 March 2013	Initial Release

Table continues on the next page...

Rev. No.	Date	Substantial Changes	
		 In section, Thermal attributes Added table for 100 MAPBGA 	
		 In section Obtaining package dimensions Updated package details for 100 MAPBGA 	
		Editoral updates throughtout including correction of various module names.	

Table 51. Revision History (continued)

Table continues on the next page...

Table 51.	Revision	History ((continued)
-----------	----------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 4	9 March 2016	 In section, Voltage regulator electrical characteristics In table, Voltage regulator electrical specifications: Updated the footnote on V_{DD_HV_BALLAST}
Rev 5	27 February 2017	 In Family Comparison section: Updated the "MPC5746C Family Comparison" table. added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map" tables.
		 Updated the product version, flash memory size and optional fields information in Ordering Information section.
		In Recommended Operating Conditions section, removed the note related to additional crossover current.
		 VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage regulator electrical characteristics section.
		 In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics" table.
		 In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table.
		 In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In "Flash memory AC timing specifications" table in Flash memory AC timing specifications section: Updated the "t_{psus}" typ value from 7 us to 9.4 us. Updated the "t_{psus}" max value from 9.1 us to 11.5 us.
		 Added "Continuous SCK Timing" table in DSPI timing section.
		 Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics (for 12-bit)" table in ADC electrical specifications section.
		 In "STANDBY Current consumption characteristics" table in Supply current characteristics section: Updated the Typ and max values of IDD Standby current. Added IDD Standby3 current spec for FIRC ON.
		Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications section.
		Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration section, and Reset Sequence Distribution as its sub-sections.

Table continues on the next page ...

Revision History

Rev. No.	Date	Substantial Changes
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes.
		 In AC Specifications@5V section, added two notes.
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table.
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table.
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us.
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table.

Table 51. Revision History (continued)