

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	129
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746bk1mku2r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Debug functionality
 - e200z2 core:NDI per IEEE-ISTO 5001-2008 Class3+
 - e200z4 core: NDI per IEEE-ISTO 5001-2008 Class 3+
- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Two System Timer Modules (STM)
 - Three Software Watchdog Timers (SWT)
 - 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7 (CJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL-B compliance
- Multiple operating modes
 - Includes enhanced low power operation

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C
l ² C	4	4	4		4	•
SAI/I ² S	3	3	3		3	
FXOSC			8 - 40) MHz		
SXOSC			32	KHz		
FIRC			16 1	MHz		
SIRC			128	KHz		
FMPLL				1		
Low Power Unit (LPU)			Y	es		
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB	
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1		1	
CRC			-	1		
MEMU			2	2		
STCU2			-	1		
HSM-v2 (security)			Opti	onal		
Censorship			Y	es		
FCCU			-	1		
Safety level			Specific functions	ASIL-B certifiable		
User MBIST			Y	es		
I/O Retention in Standby			Y	es		
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO		
Debug			JTA	GC,		
			cJT	AG		
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))	
		Z2 N3+ (C	Only available on 3	24BGA (developm	ient only))	
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)
						100 BGA

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

- 2. Based on 125°C ambient operating temperature and subject to full device characterization.
- 3. Contact NXP representative for part number
- 4. Additional SWT included when HSM option selected
- 5. See device datasheet and reference manual for information on to timer channel configuration and functions.
- 6. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

Start Address	End Address	Flash block	RWW partition	MPC5744	MPC5745	MPC5746
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	not available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	7	not available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	7	not available	not available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	7	not available	not available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	not available	not available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	not available	not available	not available

Table 2. MPC5746C Family Comparison - NVM Memory Map 1

Table 3. MPC5746C Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW partition	MPC5744B	MPC5744C
				MPC5745B	MPC5745C
				MPC5746B	MPC5746C
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	not available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	not available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	not available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	not available	available

Table 4. MPC5746C Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x4000000	0x40001FFF	8 KB	SRAM0	available	available	available
0x40002000	0x4000FFFF	56 KB	SRAM1	available	available	available
0x40010000	0x4001FFFF	64 KB	SRAM2	available	available	available
0x40020000	0x4002FFFF	64 KB	SRAM3	available	available	available

Table continues on the next page...

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{matrix} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}^{2,3} \end{matrix}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷		-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage		-0.3	6	V
V _{DD_HV_ADC0}	3.3 V to 5.5V ADC supply voltage	—	-0.3	6.0	V
V _{DD_HV_ADC1}					
V _{SS_HV_ADC0}	3.3V to 5.5V ADC supply ground	—	-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage		-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V _{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition		-50	50	mA
T _{ramp}	Supply ramp rate		0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature		-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

Figure 2. Voltage regulator capacitance connection

NOTE

On BGA, VSS_LV and VSS_HV have been joined on substrate and renamed as VSS.

Table 8.	Voltage regulator	electrical	specifications
	U U		-

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	_	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	—	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	—	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_{LV}} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		$V_{DD_{LV}} = 1.25 V$				

Table 10. Current consumption characteristics (continued)

Table continues on the next page...

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Prop. Delay (ns) ¹ L>H/H>L		Rise/Fall Edge (ns)		Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
Min	Max	Min	Max		MSB,LSB
	6/6		1.9/1.5	25	11
2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
6.4/5	19.5/19.5	3.5/2.5	12/12	200	
2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
0.090	1.1	0.035	1.1	asymmetry ²	
2.9/3.5	12.5/11	1/1	7/6	50	
11/8	35/31	7.7/5	25/21	200	
8.3/9.6	45/45	4/3.5	25/25	50	01 ³
13.5/15	65/65	6.3/6.2	30/30	200	
13/13	75/75	6.8/6	40/40	50	00 ³
21/22	100/100	11/11	51/51	200	
	2/2		0.5/0.5	0.5	NA
	Prop. De L>H Min 2.5/2.5 6.4/5 2.2/2.5 0.090 2.9/3.5 11/8 8.3/9.6 13.5/15 13/13 21/22	Prop. Delay (ns) ¹ L>H/H>L Min Max 6/6 2.5/2.5 8.25/7.5 6.4/5 19.5/19.5 2.2/2.5 8/8 0.090 1.1 2.9/3.5 12.5/11 11/8 35/31 8.3/9.6 45/45 13.5/15 65/65 13/13 75/75 21/22 100/100 2/2 2/2	Prop. Delay (ns) ¹ Rise/Fall L>H/H>L Min Min Max Min 6/6	Prop. Delay (ns)' L>H/H>LRise/Fall Edge (ns)MinMaxMinMax $6/6$ 1.9/1.5 $2.5/2.5$ $8.25/7.5$ $0.8/0.6$ $3.25/3$ $6.4/5$ $19.5/19.5$ $3.5/2.5$ $12/12$ $2.2/2.5$ $8/8$ $0.55/0.5$ $3.9/3.5$ 0.090 1.1 0.035 1.1 $2.9/3.5$ $12.5/11$ $1/1$ $7/6$ $11/8$ $35/31$ $7.7/5$ $25/21$ $8.3/9.6$ $45/45$ $4/3.5$ $25/25$ $13.5/15$ $65/65$ $6.3/6.2$ $30/30$ $13/13$ $75/75$ $6.8/6$ $40/40$ $21/22$ $100/100$ $11/11$ $51/51$ $2/2$ $2/2$ $0.5/0.5$	Prop. Delay (ns) ' L>H/H>LRise/Fall Edge (ns) Rise/Fall Edge (ns)Drive Load (pF)MinMaxMinMax $6/6$ 1.9/1.5252.5/2.58.25/7.50.8/0.63.25/350 $6.4/5$ 19.5/19.53.5/2.512/122002.2/2.58/80.55/0.53.9/3.5250.0901.10.0351.1asymmetry ² 2.9/3.512.5/111/17/65011/835/317.7/525/212008.3/9.645/454/3.525/255013.5/1565/656.3/6.230/3020013/1375/756.8/640/405021/22100/10011/1151/51200

Table 14. Functional Pad AC Specifications @ 3.3 V Range

1. As measured from 50% of core side input to Voh/Vol of the output

- This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.
- 3. Slew rate control modes
- 4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

Symbol	Parameter	Va	Unit	
		Min	Max	
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VDD_HV_x - 0.3	0.35*VDD_HV_ x	V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VDD_HV_x - 0.3	0.40 * VDD_HV_x ¹	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x ¹	_	V
Vol	Output Low Voltage ⁷	—	0.2*VDD_HV_x	V
	Output Low Voltage ⁸		0.1*VDD_HV_x	
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA

 Table 17. DC electrical specifications @ 5 V Range (continued)

1. $VDD_HV_x = VDD_HV_A$, VDD_HV_B , VDD_HV_C

- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	—	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	—	ns
t _{conv}	Conversion time ⁴	80 MHz	700	—	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	—	—	
C _S ^{6, 6}	ADC input sampling capacitance	—	_	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—		—	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V		—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V	_		875	Ω

Table continues on the next page...

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	—	_	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	—	3	LSB
DNL	Differential non-linearity	—	-1	—	1	LSB
OFS	Offset error	—	-6	—	6	LSB
GNE	Gain error	—	-4	_	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	_		250	nA
(pad going to one	Max leakage (standard channel)	150 °C	—	—	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	—	5	250	nA
	Max positive/negative injection		-5		5	mA
TUEprecision channels	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection ^{7, 7}		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 6.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
fск	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)	_	15.2	80	80	MHz
f _s	Sampling frequency	_	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	—	—	ns

Table continues on the next page...

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μΑ
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth	0.1% of pllclkout1,2	+/-(J_{SN} + J_{SDM} + J_{SSCG} + $N^{[4]}$ × J_{RJ})

Table continues on the next page...

Symbol	Characteristic ¹	Typ ²	Fac Progran	tory nming ^{3, 4}	Field Update		te	Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

Table 30. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

3. Conditions: \leq 150 cycles, nominal voltage.

- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.		_	512 x Tperiod x Nread	
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	

Table continues on the next page ...

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF.

2. For $3.3 \text{ V} \pm 10\%$ operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 RxD

Table 40.	RxD	input	characteristic
-----------	-----	-------	----------------

Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

Figure 27. JTAG boundary scan timing

6.5.2 Nexus timing

Table 46. Nexus debug port timing 1

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time	_	8	_	ns

Table continues on the next page...

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 28. Nexus output timing

Figure 29. Nexus EVTI Input Pulse Width

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	55
_	Ψ _{JT}	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
—	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
	R _{0JC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51. R	levision	History (continued)
-------------	----------	-----------	------------

Rev. No.	Date	Substantial Changes
Rev 2	7 August 2015	In features:
	-	Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
		flash programming via a serial link (SCI)
		Updated FlexCAN3 with FD support
		Updated number of STMs to two.
		 In Diock diagram. Undated SRAM size from 128 KB to 256 KB
		In Family Comparison:
		 Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC5746C Family Comparison table.
		 In Ordering parts: Undated ordering parts diagram to include 100 MAPBGA information and optional
		fields.
		In table: Absolute maximum ratings
		Removed entry: 'V _{SS_HV} '
		 Added spec for 'V_{DD12}'
		Updated 'Max' column for 'V _{INA} '
		 Opdated toothole for V_{DD_HV_ADC1_REF}. Added foothote to 'Conditions'. All voltages are referred to V_{oo} we unless.
		otherwise specified
		 Removed footnote from 'Max', Absolute maximum voltages are currently
		maximum burn-in voltages. Absolute maximum specifications for device stress
		have not yet been determined.
		In section: Recommended operating conditions
		 Added opening text: "I ne following table describes the operating conditions " Added note: "Very ways and Very ways are all"
		 In table: Becommended operating conditions (VDD, HV x = 3.3 V) and
		(VDD HV $x = 5$ V)
		 Added footnote to 'Conditions' cloumn, (All voltages are referred to V_{SS HV}
		unless otherwise specified).
		Updated footnote for 'Min' column to Device will be functional down (and
		electrical specifications as per various datasheet parameters will be
		guaranteed) to the point where one of the LVD/HVD resets the device.
		 Bemoved footnote for 'Vpp HV A', 'Vpp HV B', and 'Vpp HV C' entry and
		updated the parameter column.
		 Removed entry : 'V_{SS HV}'
		 Updated 'Parameter' column for 'V_{DD_HV_FLA}', 'V_{DD_HV_ADC1_REF}', 'V_{DD_LV}'
		Updated 'Min' column for 'V _{DD_HV_ADC0} ' 'V _{DD_HV_ADC1} '
		 Updated 'Parameter' 'Min' 'Max' columns for 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC1}' Updated footpote for 'V_{SS_WV} to V_{SS_WV} pips should never be
		grounded (through a small impedance). If these are not driven, they should
		only be left floating.
		Removed row for symbol 'V _{SS_LV} '
		 Removed footnote from Max column of V_{DD_HV_ADC0} and V_{DD_HV_ADC1}, (PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
		$V_{DD_HV_B}$ domain hence $V_{DD_HV_ADC1}$ should be within ±100 mV of
		 v_{DD_HV_B} when these channels are used for ADU_1). In table: Becommended operating conditions (V₋₁,, -3.3 V)
		• Removed footnote from V_{IN1} CMP REF, (Only applicable when supplying
		from external source).
		 In table: Recommended operating conditions (V_{DD_HV_x} = 5 V) Added spec for 'V_{IN1_CMP_REF}' and corresponding footnotes.

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 In section: Reset pad electrical characteristics Revised table, Reset electrical characteristics Deleted note, There are some specific ports that supports TTL functionality. These ports are, PB[4], PB[5], PB[6], PB[7], PB[8], PB[9], PD[0], PD[1], PD[2], PD[3], PD[4], PD[5], PD[6], PD[7], PD[8], PD[9], PD[10], and PD[11]. In section: PORST electrical specifications Updated 'Min' value for W_{NFPORST}
		 In section: Peripheral operating requirements and behaviours Changed section title from Input impedance and ADC accuracy to Input equivalent circuit and ADC conversion characteristics. Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion characteristics (for 10-bit) Removed table, ADC supply configurations.
		 In section: Analogue Comparator (CMP) electrical specifications In table: Comparator and 6-bit DAC electrical specifications Updated 'Max' value of I_{DDLS} Updated 'Min' and 'Max' for V_{AIO} and DNL Updated 'Descripton' 'Min' 'Max' od V_H Updated row for t_{DHS} Added row for t_{DLS} Removed row for V_{CMPOh} and V_{CMPOI}
		 In section: Clocks and PLL interfaces modules In table: Main oscillator electrical characteristics V_{XOSCHS}: Removed values for 4 MHz. T_{XOSCHSSU}: Updated range to 8-40 MHz. In table: 16 MHz RC Oscillator electrical specifications Updated 'Max' for T_{startup} and T_{LTJIT} Removed F_{Untrimmed} row In table: 128 KHz Internal RC oscillator electrical specifications Fosc: Removed Uncaliberated 'Condition' and updated 'Min', 'Typ', and 'Max' for Caliberated condition Fosc: Updated 'Temperature dependence' and 'Supply dependence' Max values
		 In table: PLL electrical specifications Removed entries for Input Clock Low Level, Input Clock High Level, Power consumption, Regulator Maximum Output Current, Analog Supply, Digital Supply (V_{DD_LV}), Modulation Depth (Down Spread), PLL reset assertion time, and Power Consumption Removed 'Typ' value for Duty Cycle at pllclkout Removed 'Min' value for Lock Time in calibration mode. In table: Jitter calculation Added 1 Sigma Random Jitter and Total Period Jitter values for Long Term Jitter (Interger and Fractional Mode) rows.
		 In section Flash read wait state and address pipeline control settings In Flash Read Wait State and Address Pipeline Control: Updated APC for 40 MHz. Removed section: On-chip peripherals

Table 51. Revision History (continued)

Table continues on the next page ...