

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014.10	
Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SPI
Peripherals	DMA, I ² S, POR, WDT
Number of I/O	129
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	64K × 8
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 36x10b, 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746bsk1mku2r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Start Address	End Address	Flash block	RWW partition	MPC5744	MPC5745	MPC5746
0x01000000	0x0103FFFF	256 KB code Flash block 0	6	available	available	available
0x01040000	0x0107FFFF	256 KB code Flash block 1	6	available	available	available
0x01080000	0x010BFFFF	256 KB code Flash block 2	6	available	available	available
0x010C0000	0x010FFFFF	256 KB code Flash block3	6	available	available	available
0x01100000	0x0113FFFF	256 KB code Flash block 4	6	not available	available	available
0x01140000	0x0117FFFF	256 KB code Flash block 5	7	not available	available	available
0x01180000	0x011BFFFF	256 KB code Flash block 6	7	not available	not available	available
0x011C0000	0x011FFFFF	256 KB code Flash block 7	7	not available	not available	available
0x01200000	0x0123FFFF	256 KB code Flash block 8	7	not available	not available	available
0x01240000	0x0127FFFF	256 KB code Flash block 9	7	not available	not available	not available

Table 2. MPC5746C Family Comparison - NVM Memory Map 1

Table 3. MPC5746C Family Comparison - NVM Memory Map 2

Start Address	End Address	Flash block	RWW partition	MPC5744B	MPC5744C
				MPC5745B	MPC5745C
				MPC5746B	MPC5746C
0x00F90000	0x00F93FFF	16 KB data Flash	2	available	available
0x00F94000	0x00F97FFF	16 KB data Flash	2	available	available
0x00F98000	0x00F9BFFF	16 KB data Flash	2	available	available
0x00F9C000	0x00F9FFFF	16 KB data Flash	2	available	available
0x00FA0000	0x00FA3FFF	16 KB data Flash	3	not available	available
0x00FA4000	0x00FA7FFF	16 KB data Flash	3	not available	available
0x00FA8000	0x00FABFFF	16 KB data Flash	3	not available	available
0x00FAC000	0x00FAFFFF	16 KB data Flash	3	not available	available

Table 4. MPC5746C Family Comparison - RAM Memory Map

Start Address	End Address	Allocated size	Description	MPC5744	MPC5745	MPC5746
0x4000000	0x40001FFF	8 KB	SRAM0	available	available	available
0x40002000	0x4000FFFF	56 KB	SRAM1	available	available	available
0x40010000	0x4001FFFF	64 KB	SRAM2	available	available	available
0x40020000	0x4002FFFF	64 KB	SRAM3	available	available	available

Table continues on the next page...

3.2 Ordering Information

Example	Code	PC 57	4	6	С	Ş	К0	М	MJ	6	R	
·	Qualification Status								1	1	1	
	Power Architecture											
	Automotive Platform											
	Core Version											
Flas	sh Size (core dependent)											
	Product											
	Optional fields											
	Fab and mask indicator											
	Temperature spec.											
	Package Code]			
	CPU Frequency											
R = Ta	pe & Reel (blank if Tray)											
	Due due 6 Manual au		-				D -	- 1	0			
Qualification Status	Product Version	Fab and I K = TSMC		versic	on indi	icator		-	Code	ED		
P = Engineering samples S = Automotive qualified	B = Single core C = Dual core			sion o	f the			KU = 176 LQFP EP MJ = 256 MAPBGA				
	C = Dual core		,				MN = 324 MAPBGA					
PC = Power Architecture		maeneeu,					Μ	H = 10	OMAPB	GA		
Automotive Platform		Temperat	ure sp	bec.			СР	U Fre	quency			
57 = Power Architecture in 55nm	Omtion of tiolds	C = -40.C								unto	120 MHz	
	Optional fields	V = -40.C								•	160 MHz	
Core Version	Blank = No optional feature	M = -40.C	to +12	25.0	a		0 -		sciales	upto	100 1012	
4 = e200z4 Core Version (highest core version in the case of multiple	S = HSM (Security Module)											
cores)	F = CAN FD											
,	B = HSM + CAN FD								Metho			
Flash Memory Size	R = 512K RAM							= Tape ink = T	and ree			
4 = 1.5 MB	T = HSM + 512K RAM						Dia		lay			
5 = 2 MB	G* = CAN FD + 512K RAM											
6 = 3 MB	H* = HSM + CAN FD + 512K RAM											
	* G and H for 5746 B/C only											
Note: Not all part number con	nbinations are available as produ	ction produ	ıct									
		enon prout										

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in Table 5 for specific conditions

General

Table 6. Recommended operating conditions ($V_{DD HV x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Мах	Unit
T _A ⁸	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. Only applicable when supplying from external source.
- 5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 6. VIN1_CMP_REF \leq VDD_HV_A
- 7. This supply is shorted VDD_HV_A on lower packages.
- 8. T_J =150°C. Assumes T_A =125°C
 - Assumes maximum θ JA of 2s2p board. See Thermal attributes

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD_HV_x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V
$V_{DD_HV_B}$					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage	—	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	—	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage		1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	5.5 ⁵	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA
T _A ⁷	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{\text{SS}\ \text{HV}}$ unless otherwise specified

2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.

3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with $C_{flash_{reg}}$.

General

Symbol	Parameter	State	Conditions	Co	nfiguratio	n	Threshold U				
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V	
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled	bled at Start			
2_cold		U U	Trimmed			al	1.1400	1.1550	1.1750	V	
		Rise	Untrimmed				Disabled at Start				
	device pin		Trimmed				1.1600	1.1750	1.1950	V	

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	_	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
DD_HV_ADC_REF ^{10,} 11, 11	ADC REF Operating current	T _a = 125 °C ⁵	—	200	400	μA
11, 11		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 105 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 85 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 25 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 3.6 V$				
I _{DD_HV_ADCx} ¹¹	ADC HV Operating current	T _a = 125 °C ⁵	_	1.2	1.2 2	m/
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
		T _a = 25 °C	_	1	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
I _{DD_HV_FLASH} 12	Flash Operating current during read	T _a = 125 °C ⁵		40	45	mA
	access	3.3 V supplies				
		160 MHz frequency				
		T _a = 105 °C	_	40	45	
		3.3 V supplies				
		160 MHz frequency				
		T _a = 85 °C	—	40	45	1
		3.3 V supplies				
		160 MHz frequency				
	1			-		I

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Single e200Z4 core cache disabled @80 MHz, no FlexRay, no ENET, 2 x CAN, 8 LINFlexD, 2 SPI, ADC0 and 1 used constantly, no HSM, Memory: 2M flash, 128K RAM RUN mode, Clocks: FIRC on, XOSC, PLL on, SIRC on for TOD, no 32KHz crystal (TOD runs off SIRC).
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C. In case of internal ballast mode, it is expected that the external ballast is not mounted and BAL_SELECT_INT pin is tied to VDD_HV_A supply on board. Internal ballast can be used for all use cases with current consumption upto 150mA
- 4. The power consumption does not consider the dynamic current of I/Os
- 5. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA of 2s2p board. SeeThermal attributes
- e200Z4 core, 160MHz, cache enabled; e200Z2 core, 80MHz, no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 256K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- e200Z4 core, 120MHz, cache enabled; e200Z2 core, 60MHz; no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 128K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal

- e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
LPU_RUN	with 256K RAM	$T_a = 25 \text{ °C}$	-	10	—	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	—	10.5	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	—	11	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 \ ^{\circ}C^{2, 2}$	—	—	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	$T_a = 25 \text{ °C}$	—	0.18	—	mA
		T _a = 85 °C	—	0.60	—	
		T _a = 105 °C	—	1.00		
		$T_{a} = 125 \ ^{\circ}C^{2}$	—	_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY0	STANDBY with	T _a = 25 °C	—	71	—	μA
	8K RAM	T _a = 85 °C	—	125	700	
		T _a = 105 °C	—	195	1225	
		$T_a = 125 \text{ °C}^{2, 2}$	—	314	2100	
STANDBY1	STANDBY with	$T_a = 25 \text{ °C}$	—	72		μA
	64K RAM	T _a = 85 °C	—	140	715	
		T _a = 105 °C	—	225	1275	
		$T_a = 125 \ ^{\circ}C^2$	—	358	2250	1

Table continues on the next page...

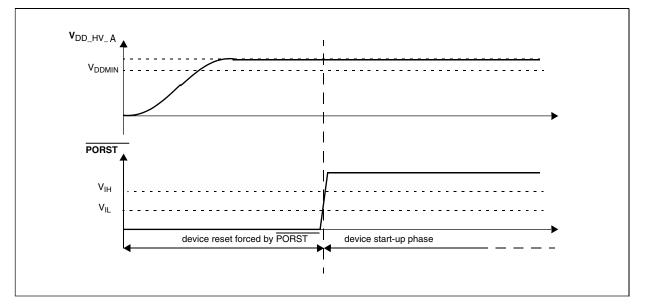
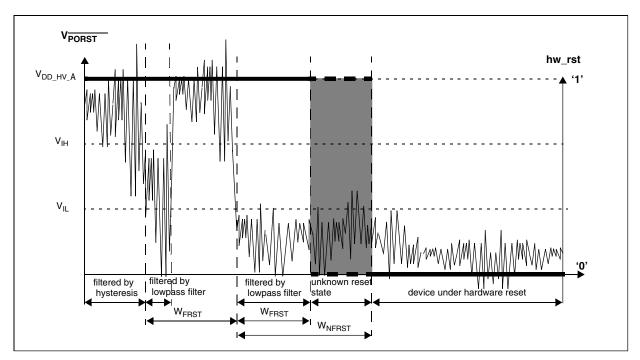
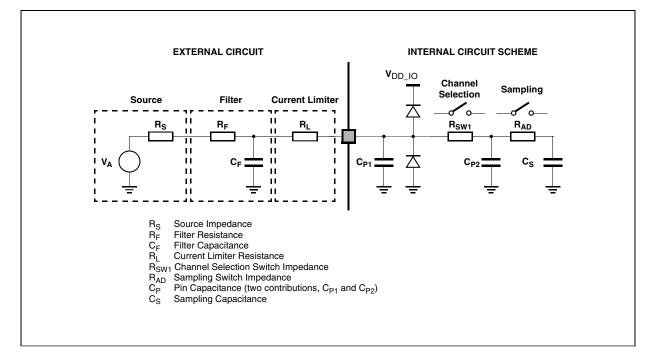

5.2 DC electrical specifications @ 3.3V Range

Table 15. DC electrical specifications @ 3.3V Range


Symbol	Parameter	Va	Value			
		Min	Max			
Vih (pad_i_hv)	Pad_I_HV Input Buffer High Voltage	0.72*VDD_HV_ x	VDD_HV_x + 0.3	V		
Vil (pad_i_hv)	Pad_I_HV Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V		
Vhys (pad_i_hv)	Pad_I_HV Input Buffer Hysteresis	0.11*VDD_HV_ x		V		
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.67*VDD_HV_ x	VDD_HV_x + 0.3	V		
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VDD_HV_x - 0.3	0.35*VDD_HV_ x	V		
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.57 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V		
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VDD_HV_x - 0.3	0.4 * VDD_HV_x ¹	V		
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V		
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	15		μA		
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		55	μA		
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	28		μA		
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		85	μA		
Pull_loh	Weak Pullup Current ⁴	15	50	μA		
Pull_lol	Weak Pulldown Current ⁵	15	50	μA		
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA		
Voh	Output High Voltage ⁶	0.8 *VDD_HV_x ¹	—	V		
Vol	Output Low Voltage ⁷	_	0.2 *VDD_HV_x ¹	V		
	Output Low Voltage ⁸		0.1 *VDD_HV_x			
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA		
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA		
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA		
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA		

- 1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

I/O parameters


Table 18.	Functional res	et pad electrical	specifications
-----------	----------------	-------------------	----------------

Symbol	Parameter	Conditions		Value		Unit
			Min	Тур	Max	1
V _{IH}	CMOS Input Buffer High Voltage	—	0.65*V _D	_	V _{DD_HV_x}	V
			D_HV_x		+0.3	
VIL	CMOS Input Buffer Low Voltage	—	V _{DD_HV}		0.35*V _{DD_HV}	V
			_x -0.3		_x	

Table continues on the next page...

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	—	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—		1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_		
C _S ^{6, 6}	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	—	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	—	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	—	_	875	Ω

Table continues on the next page...

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)		_	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	-	V _{IN1_CMP_RE}	V
V _{AIO}	Analog input offset voltage ^{1, 1}	-47	_	47	mV
V _H	Analog comparator hysteresis ^{2, 2}	_	1	25	mV
	 CR0[HYSTCTR] = 00 	_	20	50	mV
	 CR0[HYSTCTR] = 01 	_	40	70	mV
	 CR0[HYSTCTR] = 10 	_	60	105	mV
	• CR0[HYSTCTR] = 11				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	-	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	—	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	—	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μA
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth		+/-(J_{SN} + J_{SDM} + J_{SSCG} + $N^{[4]}$ × J_{RJ})

Table continues on the next page...

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

Table 28. Jitter calculation (continued)

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

2. This jitter component is added when the PLL is working in the fractional mode.

3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.

4. The value of N is dependent on the accuracy requirement of the application. See Table 29

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

No	Parameter	Value		Unit
		Min	Мах	
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	-	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17	SAI_RXD setup before SAI_BCLK	10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Table 44. Slave mode SAI Timing (continued)

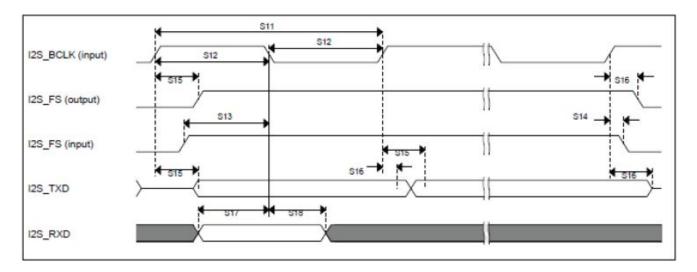


Figure 24. Slave mode SAI Timing

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 45. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Мах	Unit
1	t _{JCYC}	TCK Cycle Time ^{2, 2}	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)		3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ^{3, 3}	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0	—	ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance		15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid	—	600 ^{4, 4}	ns

Table continues on the next page ...

6.5.4 External interrupt timing (IRQ pin) Table 48. External interrupt timing specifications

No.	Symbol	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	IRQ pulse width low	—	3	—	t _{CYC}
2	t _{IPWH}	IRQ pulse width high	—	3	_	t _{CYC}
3	t _{ICYC}	IRQ edge to edge time		6		t _{CYC}

These values applies when IRQ pins are configured for rising edge or falling edge events, but not both.

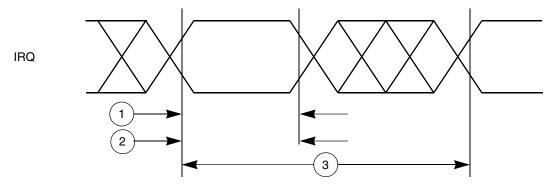


Figure 31. External interrupt timing

7 Thermal attributes

7.1 Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	50.7	°C/W	11, 22
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	24.2	°C/W	1, 2, 33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.1	°C/W	1, 3

Table continues on the next page ...

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
_	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
	R _{0JB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3.

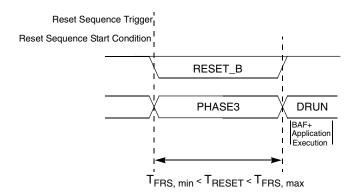


Figure 36. Functional reset sequence short

The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

11.1 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev 1	14 March 2013	Initial Release

Table continues on the next page...

Rev. No.	Date	Substantial Changes
Rev 3	2 March 2016	In section, Recommended operating conditions
		Added a new Note
		In section, Voltage regulator electrical characteristics
		 In table, Voltage regulator electrical specifications:
		 Added a new row for C_{HV_VDD_B} Added a fastrate an V
		 Added a footnote on V_{DD_HV_BALLAST} Added a new Note at the end of this section
		In section, Voltage monitor electrical characteristics
		 In table, Voltage monitor electrical characteristics: Removed "V_{LVD FLASH}" and "V_{LVD FLASH} during low power mode using
		LPBG as reference" rows
		 Updated Fall and Rise trimmed Minimum values for V_{HVD_LV_cold}
		In section, Supply current characteristics
		In table, Current consumption characteristics:
		 Updated the footnote mentioned in the Condition column of I_{DD_STOP} row
		Updated all TBD values In table Law Power Unit (LBL) Current consumption above staristics:
		 In table, Low Power Unit (LPU) Current consumption characteristics: Updated the typical value of LPU_STOP to 0.18 mA
		Updated all TBD values
		 In table, STANDBY Current consumption characteristics:
		Updated all TBD values
		In section, AC specifications @ 3.3 V Range
		In table, Functional Pad AC Specifications @ 3.3 V Range:
		Updated Rise/Fall Edge values
		In section, DC electrical specifications @ 3.3V Range
		In table, DC electrical specifications @ 3.3V Range:
		 Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, AC specifications @ 5 V Range
		In table, Functional Pad AC Specifications @ 5 V Range:
		Updated Rise/Fall Edge values
		 In section, DC electrical specifications @ 5 V Range
		In table, DC electrical specifications @ 5 V Range:
		 Updated Min and Max values for Pull_Ioh and Pull_Iol rows Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, Reset pad electrical characteristics
		 In table, Functional reset pad electrical specifications: Updated parameter column for V_{IH}, V_{IL} and V_{HYS} rows
		• Updated Min and Max values for V_{IH} and V_{IL} rows
		 In section, PORST electrical specifications In table, PORST electrical specifications:
		 Updated Unit and Min/Max values for V_{IH} and V_{IL} rows
		. In contrast, land a subscience discuit and ADO companying share staristics
		 In section, Input equivalent circuit and ADC conversion characteristics In table, ADC conversion characteristics (for 12-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		 In table, ADC conversion characteristics (for 10-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		In section, Analog Comparator (CMP) electrical specifications
		In table, Comparator and 6-bit DAC electrical specifications:
	MPC57	• Updated Min and Max values for Valo to ±47 mV 46C Microcontroller Datasneet Data Sheet, Rev. 5.1, 05/2017.
74		NXP Semiconductors
		In section, Main oscillator electrical characteristics

Table 51.	Revision	History ((continued)
-----------	----------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 4	9 March 2016	 In section, Voltage regulator electrical characteristics In table, Voltage regulator electrical specifications: Updated the footnote on V_{DD_HV_BALLAST}
Rev 5	27 February 2017	 In Family Comparison section: Updated the "MPC5746C Family Comparison" table. added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map" tables.
		 Updated the product version, flash memory size and optional fields information in Ordering Information section.
		In Recommended Operating Conditions section, removed the note related to additional crossover current.
		 VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage regulator electrical characteristics section.
		 In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics" table.
		 In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table.
		 In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In "Flash memory AC timing specifications" table in Flash memory AC timing specifications section: Updated the "t_{psus}" typ value from 7 us to 9.4 us. Updated the "t_{psus}" max value from 9.1 us to 11.5 us.
		 Added "Continuous SCK Timing" table in DSPI timing section.
		 Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics (for 12-bit)" table in ADC electrical specifications section.
		 In "STANDBY Current consumption characteristics" table in Supply current characteristics section: Updated the Typ and max values of IDD Standby current. Added IDD Standby3 current spec for FIRC ON.
		Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications section.
		Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration section, and Reset Sequence Distribution as its sub-sections.

Table continues on the next page ...