

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz, 160MHz
Connectivity	CANbus, Ethernet, FlexRay, I ² C, LINbus, SAI, SPI
Peripherals	DMA, I ² S, LVD/HVD, POR, WDT
Number of I/O	65
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	128K x 8
RAM Size	384K x 8
Voltage - Supply (Vcc/Vdd)	3.15V ~ 5.5V
Data Converters	A/D 68x10b, 31x12b SAR
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746chk1ammh6

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

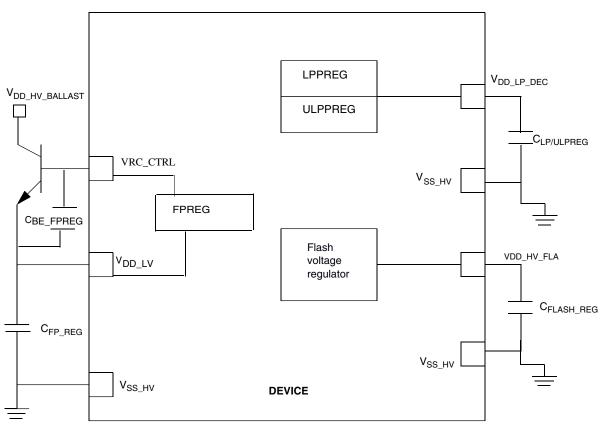


Figure 2. Voltage regulator capacitance connection

NOTE

On BGA, VSS_LV and VSS_HV have been joined on substrate and renamed as VSS.

Table 8.	Voltage regulator electrical specifications
----------	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	—	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31]	4.7		

Table continues on the next page ...

4.4 Voltage monitor electrical characteristics

Table 9.	Voltage monitor electrical characteristics
----------	--

Symbol	Parameter	State	Conditions	Co	nfiguratio	n		Thresho	ld	Unit				
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V				
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V				
	on reset detector		Trimmed	-		ve	-	-	-	V				
		Rise	Untrimmed				0.980	1.029	1.078	V				
			Trimmed				-	-	-	V				
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start	1					
d	voltage monitoring,		Trimmed	-		al	1.325	1.345	1.375	V				
	detecting at	Rise	Untrimmed				Disabled	at Start						
	device pin		Trimmed				1.345	1.365	1.395	V				
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V				
2_hot	voltage monitoring,		Trimmed			ve	1.1250	1.1425	1.1600	V				
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V				
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V				
V _{LVD_LV_PD}					LV supply low	Fall	Untrimmed	Yes	No [Destructi	1.0800	1.1200	1.1600	V
monitoring	voltage		Trimmed	-		ve	1.1140	1.1370	1.1600	V				
	detecting on the	Rise	Untrimmed				1.1000	1.140	1.1800	V				
	PD1 core (hot) area		Trimmed			1.1340	1.1570	1.1800	V					
V _{LVD_LV_PD}	LV supply low		No	Destructi	1.0800	1.1200	1.1600	V						
0_hot (BGFP)	voltage	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V			
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V				
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V				
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V				
	on reset detector		Trimmed	-		ve	-	-	-	V				
		Rise	Untrimmed	-			2.7500	2.9000	3.0500	V				
			Trimmed	-			-	-	-	V				
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V				
0 ^{3, 3}	low voltage monitoring - low		Trimmed			ve	2.9780	3.0390	3.1000	V				
	range	Rise	Untrimmed				2.7800	2.9530	3.1250	V				
			Trimmed				3.0080	3.0690	3.1300	V				
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disabled	at Start						
l ³	low voltage monitoring - high					ve	4.0600	4.151	4.2400	V				
	range	Rise	Trimmed]			Disabled	at Start						
							4.1150	4.2010	4.3000	V				

Table continues on the next page ...

5.3 AC specifications @ 5 V Range

Table 16. Functional Pad AC Specifications @ 5 V Range

Symbol	Prop. D	elay (ns) ¹	Rise/Fal	l Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	L>ł	H/H>L				
	Min	Max	Min	Мах] [MSB,LSB
pad_sr_hv		4.5/4.5		1.3/1.2	25	11
(output)		6/6		2.5/2	50	
(output)		13/13		9/9	200	
		5.25/5.25		3/2	25	10
		9/8		5/4	50	
		22/22		18/16	200	
		27/27		13/13	50	01 ^{2, 2}
		40/40		24/24	200	
		40/40		24/24	50	00 ²
		65/65		40/40	200	
pad_i_hv/ pad_sr_hv		1.5/1.5		0.5/0.5	0.5	NA
(input)						

1. As measured from 50% of core side input to Voh/Vol of the output

2. Slew rate control modes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Value		Unit
		Min	Мах	
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V

Table continues on the next page...

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Value			
			Min	Тур	Max		
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	_	mV	
V _{DD_POR}	Minimum supply for strong pull-down activation	-	—	_	1.2	V	
I _{OL_R}	Strong pull-down current ^{1, 1}	$\label{eq:Device under power-on reset} $V_{DD_HV_A} = V_{DD_POR}$$V_{OL} = 0.35^*V_{DD_HV_A}$$$	0.2	_		mA	
		Device under power-on reset $V_{DD_HV_A} = V_{DD_POR}$ $V_{OL} = 0.35^*V_{DD_HV_IO}$	11	_		mA	
W _{FRST}	RESET input filtered pulse	—	_	_	500	ns	
W _{NFRST}	RESET input not filtered pulse	-	2000	—	_	ns	
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	—	82	μA	

 Table 18.
 Functional reset pad electrical specifications (continued)

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value				
		Min	Тур	Max			
W _{FPORST}	PORST input filtered pulse		—	200	ns		
WNFPORST	PORST input not filtered pulse	1000	—	_	ns		
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	_	V		
V _{IL}	Input low level	-	_	0.35 x V _{DD_HV_A}	V		

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
R _{AD} ⁶	Internal resistance of analog source	—	-	_	825	Ω
INL	Integral non-linearity (precise channel)	—	-2	_	2	LSB
INL	Integral non-linearity (standard channel)	—	-3	_	3	LSB
DNL	Differential non-linearity	—	-1		1	LSB
OFS	Offset error	—	-6	_	6	LSB
GNE	Gain error	—	-4	_	4	LSB
ADC Analog Pad	Max leakage (precision channel)	150 °C	—	_	250	nA
(pad going to one ADC)	Max leakage (standard channel)	150 °C	—	_	2500	nA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Max leakage (standard channel)	105 °C _{TA}	_	5	250	nA
	Max positive/negative injection		-5	_	5	mA
TUEprecision channels	Total unadjusted error for precision	Without current injection	-6	+/-4	6	LSB
	channels	With current injection ^{7, 7}		+/-5		LSB
TUE _{standard/extended}	Total unadjusted error for standard/	Without current injection	-8	+/-6	8	LSB
channels	extended channels	With current injection ⁷		+/-8		LSB
t _{recovery}	STOP mode to Run mode recovery time				< 1	μs

Table 20. ADC conversion characteristics (for 12-bit) (continued)

- Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required relation between IO_supply_A,B,C and ADC_Supply.
- 2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral clock based on register configuration in the ADC.
- During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
 resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
 sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
 clock t_{sample} depend on programming.
- This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the ADC is lower.
- 6. See Figure 6.
- 7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here

Table 21. ADC conversion characteristics (for 10-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency.)	_	15.2	80	80	MHz
f _s	Sampling frequency	—	—	_	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	275	_	_	ns

Table continues on the next page...

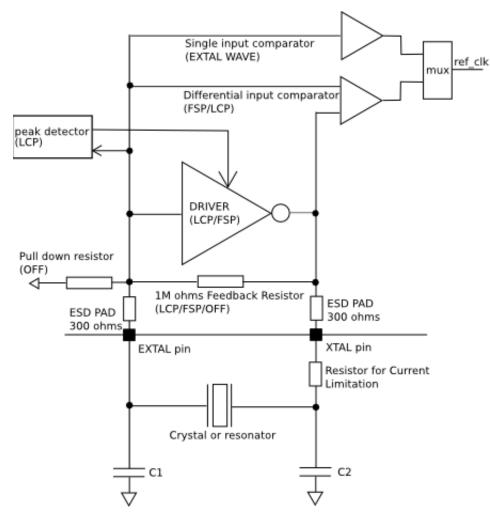


Figure 7. Oscillator connections scheme

Table 23.	Main oscillator electrical characteristics
-----------	--

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit	
f _{XOSCHS}	Oscillator frequency	FSP/LCP		8		40	MHz	
g _{mXOSCHS}	Driver	LCP			23		mA/V	
	Transconduct ance	FSP			33	_		
V _{XOSCHS}	Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}	
	Amplitude	Amplitude		16 MHz		1.0		
			40 MHz		0.8		-	
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms	
		16 MHz	16 MHz		1			
			40 MHz		0.5			

Table continues on the next page...

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit supply current		16 MHz		2.2		
			40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger		Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		—	—	1.5	%
T _{LTJIT}	Long term jitter		—	—	0.2	%

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

Table 28. Jitter calculation (continued)

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

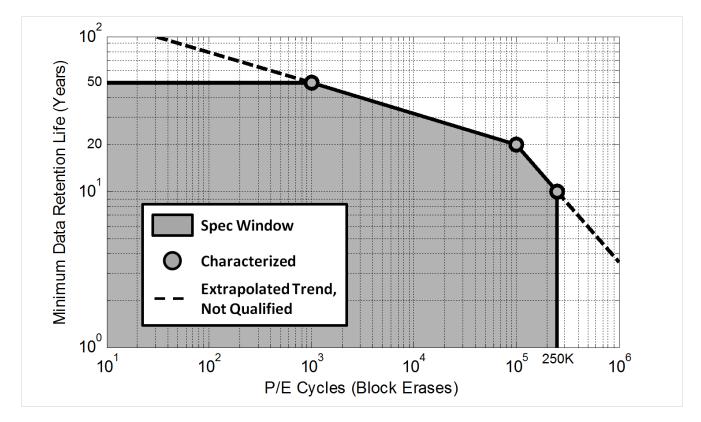
2. This jitter component is added when the PLL is working in the fractional mode.

3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.

4. The value of N is dependent on the accuracy requirement of the application. See Table 29

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10


6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

6.3.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.		_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	_	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs

Table continues on the next page...

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

Figure 8. DSPI classic SPI timing — master, CPHA = 0

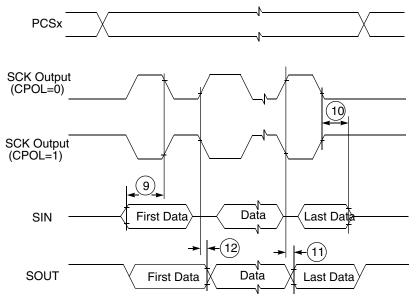
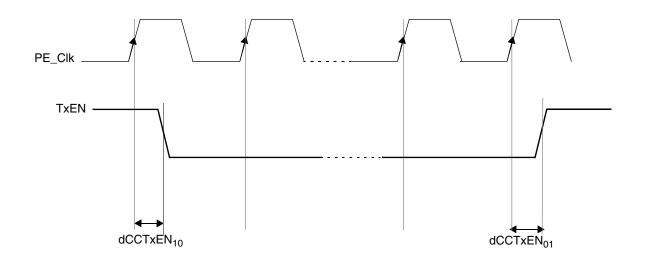



Figure 9. DSPI classic SPI timing — master, CPHA = 1

6.4.2.3 TxD

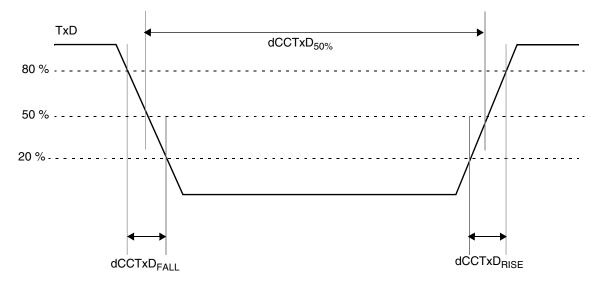
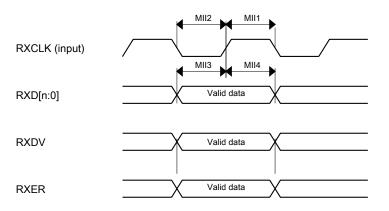



Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output		9 ²	ns

Table continues on the next page...

Figure 22. RMII/MII receive signal timing diagram

6.4.3.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	_	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

 Table 42. RMII signal switching specifications

6.4.4 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

no	Parameter	Value Unit		Unit
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns

Table 43. Master mode SAI Timing

Table continues on the next page...

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Max	Unit
12	t _{BSDVZ} TCK Falling Edge to Output Valid out of High Impedance		—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	14 t _{BSDST} Boundary Scan Input Valid to TCK Rising Edge		15		ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

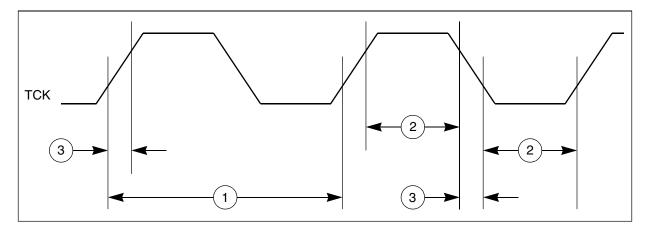


Figure 25. JTAG test clock input timing

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
-	R _{θJB}	Thermal resistance, junction to board	10.8	°C/W	44
-	R _{θJC}	Thermal resistance, junction to case	8.2	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	7.8	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in package drawing.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

Package	NXP Document Number
100 MAPBGA	98ASA00802D

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51.	Revision	History	(continued)
-----------	----------	---------	-------------

Rev. No.	Date	Substantial Changes
	Date 'August 2015	 Substantial Changes In features: Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal flash programming via a serial link (SCI) Updated FlexCAN3 with FD support Updated flexCAN3 with FD support Updated flexCAN3 with FD support Updated StAM size from 128 KB to 256 KB. In Family Comparison: Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC574CF Tamily Comparison table. In Ordering parts: Updated ordering parts diagram to include 100 MAPBGA information and optional fields. In table: Absolute maximum ratings Removed entry: V_{SS, H}¹ Added spec for V_{DD1}⁴. Updated footnote to VConditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote to VConditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote to Conditions', All voltages are referred to V_{SS, HV} unless otherwise specified Removed footnote for Max', Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. In section: Recommended operating conditions (VDD_HV_X = 3.3 V) and (VDD_HV_X = 5 V) Added footnoite for Vini' column to Device will be functional down (and electrical specifications as per valious datasheet parameters' Wile big uaranteed) to the point where one of the LVD/HVD, device is reset. Removed entry: V_{SS, HV} Updated footnote for V_{DD, HV, A} Col_HV_EA', V_{DD, HV, Ea'}, N_{DD, HV, C} and V_{DD, HV, C} entry and updated the parameter column. Removed entry: V_{SS, HV} Updated footnone for V_{DD, HV, ADC1}, FEF', V_{DD, HV, C}
		 from external source). In table: Recommended operating conditions (V_{DD HV x} = 5 V)

Table continues on the next page ...

Rev. No.	Date	Substantial Changes
		 In section: Voltage monitor electrical characteristics Updated description for Low Voltage detector block. Added note, BCP56, MCP68 and MJD31 are guaranteed ballasts. In table: Voltage regulator electrical specifications
		 In section: Supply current characteristics In table: Current consumption characteristics I_{DD_BODY_4}: Updated SYS_CLK to 120 MHz. I_{DD_BODY_4}: Updated Max for T_a= 105 °C fand 85 °C) I_{dd_STOP}: Added condition for T_a= 105 °C and removed Max value for T_a= 85 °C. I_{DD_HV_ADC_REF}: Added condition for T_a= 105 °C and 85 °C and removed Max value for T_a= 25 °C. I_{DD_HV_FLASH}: Added condition for T_a= 105 °C and 85 °C In table: Low Power Unit (LPU) Current consumption characteristics LPU_RUN and LPU_STOP: Added condition for T_a= 105 °C and 85 °C In table: STANDBY Current consumption characteristics Added condition for T_a= 105 °C for all entries.
		 In section: I/O parameters In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updateded Min and Max values for Vih and Vil respectively. In table: Functional Pad AC Specifications @ 5 V Range Updated values for 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Updated values for 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Updated Min value for Vhys

Table 51. Revision History (continued)

Table continues on the next page...

How to Reach Us:

Home Page: www.nxp.com

Web Support: www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5746C Rev. 5.1, 05/2017