

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	3MB (3M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746chk1ammj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTE

All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g., FlexCAN0) and end at highest available number or address (e.g., MPC574xB/C have 6 CAN, ending with FlexCAN5).

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C MPC5745C MPC5746C			
CPUs	e200z4	e200z4	e200z4	e200z4	e200z4	e200z4	
				e200z2	e200z2	e200z2	
FPU	e200z4	e200z4	e200z4	e200z4	e200z4	e200z4	
Maximum	160MHz (Z4)	160MHz (Z4)	160MHz (Z4)	160MHz (Z4)	160MHz (Z4)	160MHz (Z4)	
Operating Frequency ²				80MHz (Z2)	80MHz (Z2)	80MHz (Z2)	
Flash memory	2 MB	1.5 MB	3 MB	1.5 MB	2 MB	3 MB	
EEPROM support	E	Emulated up to 64	<	E	Emulated up to 64	<	
RAM	256 KB	192 KB	384 KB	192 KB	256 KB	384 KB	
			(Optional 512KB) ^{3, 3}			(Optional 512KB) ³	
ECC			End t	o End			
SMPU			16 e	entry			
DMA			32 ch	annels			
10-bit ADC			36 Standar	d channels			
			32 Externa	al channels			
12-bit ADC			15 Precisio	n channels			
			16 Standar	d channels			
Analog Comparator			;	3			
BCTU			-	1			
SWT		1, SWT[0] ⁴			2 ⁴		
STM		1, STM[0]			2		
PIT-RTI			16 chan	nels PIT			
			1 chanr	nels RTI			
RTC/API			-	1			
Total Timer I/O ⁵			64 ch	annels			
			16-	bits			
LINFlexD		1			1		
	Master and	Slave (LINFlexD[0 (LINFlexD[1:11])), 11 Master	Master and	Slave (LINFlexD[0 (LINFlexD[1:15])), 15 Master	
FlexCAN	6 with optional	CAN FD support	(FlexCAN[0:5])	8 with optional	CAN FD support	(FlexCAN[0:7])	
DSPI/SPI			4 x [DSPI			
	4 x SPI						

Table 1. MPC5746C Family Comparison1

Table continues on the next page...

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C	
l ² C	4	4	4	4			
SAI/I ² S	3	3	3		3		
FXOSC			8 - 40) MHz			
SXOSC			32	KHz			
FIRC			16 1	MHz			
SIRC			128	KHz			
FMPLL				1			
Low Power Unit (LPU)			Y	es			
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB		
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1	1			
CRC			-	1			
MEMU			2	2			
STCU2			-	1			
HSM-v2 (security)			Opti	onal			
Censorship			Y	es			
FCCU			-	1			
Safety level			Specific functions	ASIL-B certifiable			
User MBIST			Y	es			
I/O Retention in Standby			Y	es			
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO			
Debug			JTA	GC,			
			cJT	AG			
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))		
		Z2 N3+ (C	Only available on 3	24BGA (developm	ient only))		
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,	
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)	
						100 BGA	

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

- 2. Based on 125°C ambient operating temperature and subject to full device characterization.
- 3. Contact NXP representative for part number
- 4. Additional SWT included when HSM option selected
- 5. See device datasheet and reference manual for information on to timer channel configuration and functions.
- 6. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

Table 8.	Voltage regulator	electrical s	pecifications ((continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{flash_} reg ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{HV_VDD_A}	VDD_HV_A supply capacitor ^{5, 5}	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_B}	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_VDD_C}	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47	_	_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_		0.1	Ohm
t _{SU}	Start-up time with external ballastafter main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	74	_	μs
t _{SU_int}	Start-up time with internal ballast after main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	103	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{f_{p} reg} = 3 \ \mu F$		1.0		μs

- Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
 Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.

4.4 Voltage monitor electrical characteristics

Table 9.	Voltage	monitor	electrical	characteristics
----------	---------	---------	------------	-----------------

Symbol	Parameter	State	Conditions	Co	nfiguratio	on		Threshold		Unit
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V
	on reset detector		Trimmed			ve	-	-	-	V
		Rise	Untrimmed	-			0.980	1.029	1.078	V
			Trimmed				-	-	-	V
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start		
d	voltage		Trimmed			al	1.325	1.345	1.375	V
	detecting at	Rise	Untrimmed				Disabled	at Start	1	
	device pin		Trimmed				1.345	1.365	1.395	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
2_hot	voltage		Trimmed			ve	1.1250	1.1425	1.1600	V
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
1_hot (BGFP)	1_hot (BGFP) voltage		Trimmed			ve	1.1140	1.1370	1.1600	V
	detecting on the	Rise	Untrimmed				1.1000	1.140	1.1800	V
	PD1 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
0_hot (BGFP)	voltage		Trimmed			ve	1.1140	1.1370	1.1600	V
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V
	on reset detector		Trimmed			ve	-	-	-	V
		Rise	Untrimmed				2.7500	2.9000	3.0500	V
			Trimmed				-	-	-	V
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V
0 ^{3, 3}	low voltage		Trimmed			ve	2.9780	3.0390	3.1000	V
	range	Rise	Untrimmed				2.7800	2.9530	3.1250	V
			Trimmed				3.0080	3.0690	3.1300	V
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disabled	at Start		
1 [°]	low voltage					ve	4.0600	4.151	4.2400	V
	range	Rise	Trimmed				Disabled	l at Start		
							4.1150	4.2010	4.3000	V

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	<u> </u>	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_{LV}} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		$V_{DD_{LV}} = 1.25 V$				

Table 10. Current consumption characteristics (continued)

Table continues on the next page...

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Value		
			Min	Тур	Max	1
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	—	mV
V _{DD_POR}	Minimum supply for strong pull-down activation	—	_	-	1.2	V
I _{OL_R}	Strong pull-down current ^{1, 1}	Device under power-on reset	0.2	—	-	mA
		$V_{DD_HV_A} = V_{DD_POR}$				
		$V_{OL} = 0.35^* V_{DD_HV_A}$				
		Device under power-on reset	11	—	-	mA
		$V_{DD_HV_A} = V_{DD_POR}$				
		$V_{OL} = 0.35^* V_{DD_HV_IO}$				
W _{FRST}	RESET input filtered pulse	—	—	—	500	ns
W _{NFRST}	RESET input not filtered pulse		2000	_	_	ns
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	_	82	μA

 Table 18.
 Functional reset pad electrical specifications (continued)

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value			
		Min	Тур	Max	1	
W _{FPORST}	PORST input filtered pulse	_	_	200	ns	
W _{NFPORST}	PORST input not filtered pulse	1000	_	—	ns	
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	—	V	
V _{IL}	Input low level		_	0.35 x V _{DD_HV_A}	V	

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Figure 7. Oscillator connections scheme

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Мах	Unit
fxoschs	Oscillator frequency	FSP/LCP		8		40	MHz
9 _{mXOSCHS}	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33		
V _{XOSCHS}	Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
	Amplitude		16 MHz		1.0		
			40 MHz		0.8		
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms
			16 MHz		1		
			40 MHz]	0.5]	

Table continues on the next page...

Memory interfaces

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	—	1,339.5	μs

Table 31. Flash memory Array Integrity and Margin Read specifications (continued)

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ^{1, 1}	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ^{2, 2}	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	—	Years
		Blocks with 100,000 P/E cycles.	20	—	Years
		Blocks with 250,000 P/E cycles.	10		Years

1. Program and erase supported across standard temperature specs.

2. Program and erase supported across standard temperature specs.

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

6.3.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	—	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	—	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs

Table continues on the next page...

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.2 TxEN

Figure 17. TxEN signal

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	_	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

Debug specifications

Figure 26. JTAG test access port timing

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 28. Nexus output timing

Figure 29. Nexus EVTI Input Pulse Width

6.5.4 External interrupt timing (IRQ pin) Table 48. External interrupt timing specifications

No.	Symbol	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	IRQ pulse width low	—	3	—	t _{CYC}
2	t _{IPWH}	IRQ pulse width high	—	3	_	t _{CYC}
3	t _{ICYC}	IRQ edge to edge time	_	6		t _{CYC}

These values applies when IRQ pins are configured for rising edge or falling edge events, but not both.

Figure 31. External interrupt timing

7 Thermal attributes

7.1 Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	50.7	°C/W	11, 22
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	24.2	°C/W	1, 2, 33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.1	°C/W	1, 3

Table continues on the next page ...

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
—	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
	R _{0JC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
_	R _{θJC}	Thermal resistance, junction to case	7.9	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
	R _{0JB_CSB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	9.0	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50.9	°C/W	1, 21,2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	27.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.0	°C/W	1,3
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	22.2	°C/W	1,3

Table continues on the next page ...

Reset sequence

Figure 35. Functional reset sequence long

Revision History

Rev. No.	Date	Substantial Changes
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes.
		 In AC Specifications@5V section, added two notes.
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table.
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table.
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us.
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table.

Table 51. Revision History (continued)