

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746ck1ammj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}{}^{2, 3} \end{array}$	² _A, V _{DD_HV_B} , 3.3 V - 5. 5V input/output supply voltage — D_HV_c ^{2, 3}		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷	_	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage	—	-0.3	6	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	3.3 V to 5.5V ADC supply voltage	_	-0.3	6.0	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	3.3V to 5.5V ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage	—	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V_{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{ramp}	Supply ramp rate	_	0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

General

Table 6. Recommended operating conditions ($V_{DD HV x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Мах	Unit
T _A ⁸	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. Only applicable when supplying from external source.
- 5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 6. VIN1_CMP_REF \leq VDD_HV_A
- 7. This supply is shorted VDD_HV_A on lower packages.
- 8. T_J =150°C. Assumes T_A =125°C
 - Assumes maximum θ JA of 2s2p board. See Thermal attributes

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD_HV_x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	4.5	5.5	V
$V_{DD_HV_B}$					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage	—	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	—	3.15	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	5.5	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ⁴	Core supply voltage		1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage	_	3.15	5.5 ⁵	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA
T _A ⁷	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias	_	-40	150	°C

1. All voltages are referred to $V_{\text{SS}\ \text{HV}}$ unless otherwise specified

2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.

3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with $C_{flash_{reg}}$.

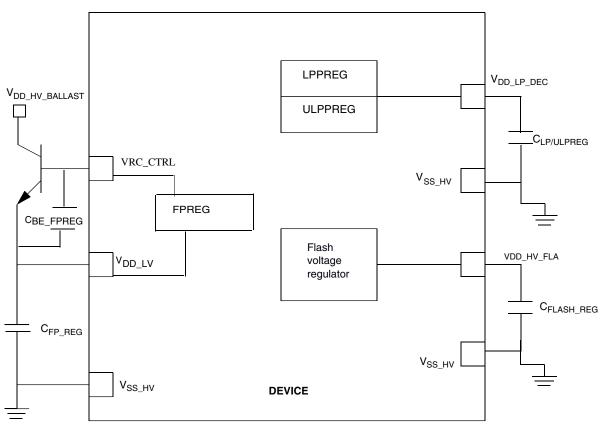


Figure 2. Voltage regulator capacitance connection

NOTE

On BGA, VSS_LV and VSS_HV have been joined on substrate and renamed as VSS.

Table 8.	Voltage regulator electrical specifications
----------	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	—	0.001	_	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31]	4.7		

Table continues on the next page ...

Table 8. Voltage regulator electrical specifications (continued)	Table 8.	Voltage regulator	electrical s	specifications ((continued)
--	----------	-------------------	--------------	------------------	-------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{flash_reg} ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001		0.03	Ohm
$C_{_{HV_VDD_A}}$	VDD_HV_A supply capacitor ^{5, 5}	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
$C_{_{HV_VDD_B}}$	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
$C_{_{HV_VDD_C}}$	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47		_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_	_	0.1	Ohm
t _{SU}	Start-up time with external ballastafter main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	_	74		μs
t _{SU_int}	Start-up time with internal ballast after main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	_	103		μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{fp_{reg}} = 3 \ \mu F$		1.0		μs

- Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
 Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.

General

Symbol	Parameter	State	Conditions	Configuration			Threshold I			Unit				
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V				
V _{LVD_LV_PD}	LV supply low	ow Fall Untrimmed No Yes Function Disabled at Start												
2_cold			Trimmed	_					al	1.1400	1.1550	1.1750	V	
1		Rise	Untrimmed											
			Trimmed				1.1600	1.1750	1.1950	V				

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	_	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	—	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_LV} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		V _{DD_LV} = 1.25 V				

Table 10. Current consumption characteristics (continued)

Table continues on the next page...

5.3 AC specifications @ 5 V Range

Table 16. Functional Pad AC Specifications @ 5 V Range

Symbol	Prop. D	elay (ns) ¹	Rise/Fal	l Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	L>H/H>L		L>H/H>L			
	Min	Max	Min	Мах] [MSB,LSB
pad_sr_hv		4.5/4.5		1.3/1.2	25	11
(output)		6/6		2.5/2	50	
(output)		13/13		9/9	200	
		5.25/5.25		3/2	25	10
		9/8		5/4	50	
		22/22		18/16	200	
		27/27		13/13	50	01 ^{2, 2}
		40/40		24/24	200	
		40/40		24/24	50	00 ²
		65/65		40/40	200	
pad_i_hv/ pad_sr_hv		1.5/1.5		0.5/0.5	0.5	NA
(input)						

1. As measured from 50% of core side input to Voh/Vol of the output

2. Slew rate control modes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Value		Unit
		Min	Мах	
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V

Table continues on the next page...

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

Table 28. Jitter calculation (continued)

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

2. This jitter component is added when the PLL is working in the fractional mode.

3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.

4. The value of N is dependent on the accuracy requirement of the application. See Table 29

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Characteristic ¹	Typ ²		tory nming ^{3, 4}	F	Field Update		
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	—	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	—	ms

Table 30. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

3. Conditions: \leq 150 cycles, nominal voltage.

- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.	-	_	512 x Tperiod x Nread	_
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	-	_	2048 x Tperiod x Nread	_

Table continues on the next page ...

6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spo	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	7
1	t _{scк}	DSPI cycle	Master (MTFE = 0)	25	_	50	_	ns
		time	Slave (MTFE = 0)	40	—	60	_	
2	tcsc	PCS to SCK delay		16	—	_	-	ns
3	t _{ASC}	After SCK delay	_	16	—	—	-	ns
4	t _{SDC}	SCK duty cycle	_	t _{SCK} /2 - 10	t _{SCK} /2 + 10	—	-	ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	_	10	—	_	ns
7	t _{PCSC}	PCSx to PCSS time	_	13	—	—	_	ns
8	t _{PASC}	PCSS to PCSx time		13	—	_	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	—	20	_	ns
		time for inputs	Slave	2	—	2	_	
		inputs	Master (MTFE = 1, CPHA = 0)	15		8 ^{1, 1}	_	
			Master (MTFE = 1, CPHA = 1)	15	—	20	—	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5		ns
		time for inputs	Slave	4	—	4	_	
		inputs	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	—	-5	-	
11	t _{suo}	Data valid	Master (MTFE = 0)	_	NA	—	4	ns
		(after SCK edge)	Slave	_	15	_	23	
		euge)	Master (MTFE = 1, CPHA = 0)	—	4	—	16 ¹	
			Master (MTFE = 1, CPHA = 1)		4	_	4	1

Table continues on the next page...

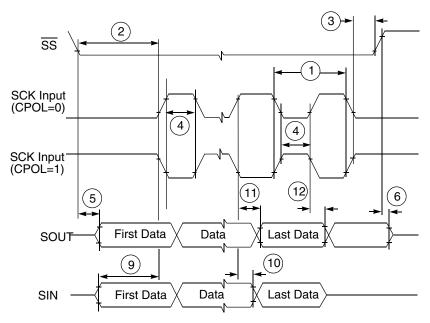


Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

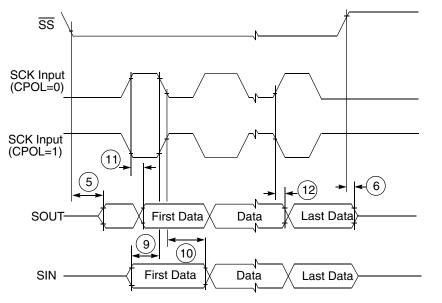


Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

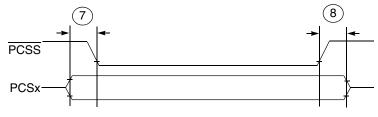
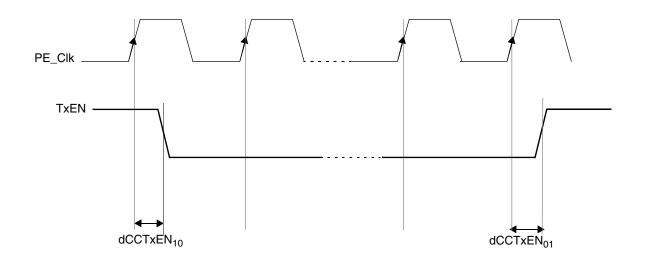



Figure 16. DSPI PCS strobe (PCSS) timing

6.4.2.3 TxD

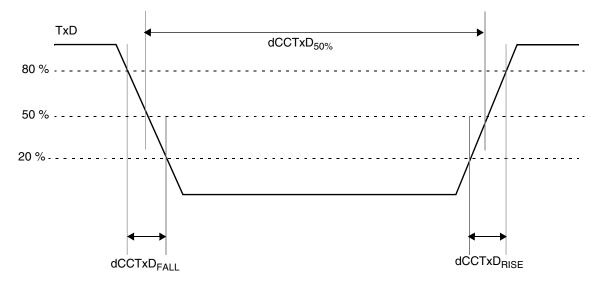
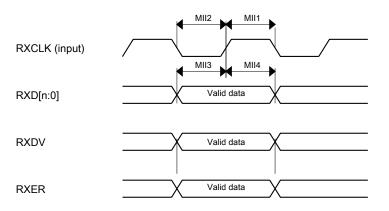



Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output		9 ²	ns

Table continues on the next page...

Figure 22. RMII/MII receive signal timing diagram

6.4.3.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

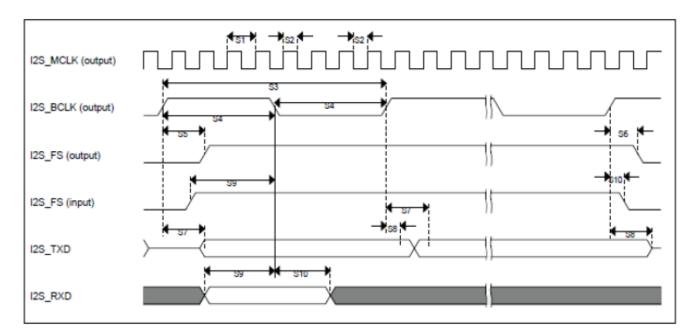
Num	Description	Min.	Max.	Unit
—	EXTAL frequency (RMII input clock RMII_CLK)	_	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2	_	ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	—	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	_	15	ns

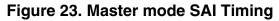
 Table 42. RMII signal switching specifications

6.4.4 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

no	Parameter	Va	Unit	
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns


Table 43. Master mode SAI Timing


Table continues on the next page...

FlexRay electrical specifications

no	Parameter	Va	Unit	
		Min	Max	
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

Table 43. Master mode SAI Timing (continued)

Table 44.	Slave	mode	SAI	Timing
-----------	-------	------	-----	--------

No	Parameter	Value		Unit
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	-	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	-	ns
S14	SAI_FS input hold after SAI_BCLK	2	-	ns

Table continues on the next page...

Debug specifications

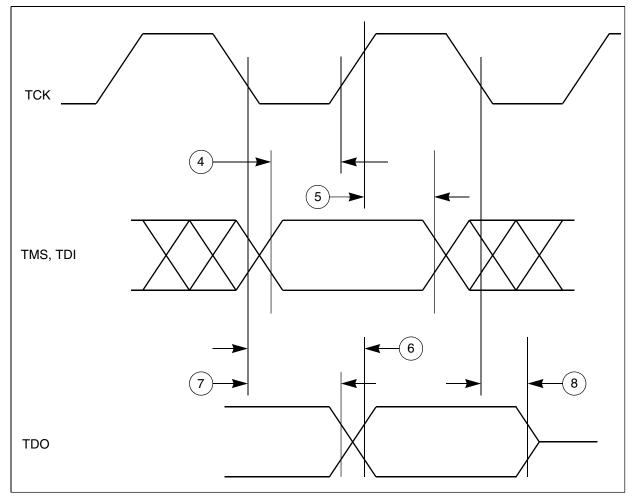


Figure 26. JTAG test access port timing

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	55
_	Ψ _{JT}	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

Pinouts

Package	NXP Document Number		
176-pin LQFP-EP	98ASA00698D		
256 MAPBGA	98ASA00346D		
324 MAPBGA	98ASA10582D		

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

10.1 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1.1 Reset sequence duration

Table 49 specifies the reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter T _{Reset}			Unit	
			Min	Тур 1, 1	Max	
1	1 T _{DRB} Destructive Reset Sequence, BIST enabled		6.2	7.3	-	ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled		182	-	us
3	T _{ERLB}	LB External Reset Sequence Long, Unsecure Boot		7.3	-	ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot		182	-	us
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot		9	-	us

Table 49. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

Rev. No.	Date	Substantial Changes
Rev 3	2 March 2016	In section, Recommended operating conditions
		Added a new Note
		In section, Voltage regulator electrical characteristics
		 In table, Voltage regulator electrical specifications:
		 Added a new row for C_{HV_VDD_B} Added a fastrate an V
		 Added a footnote on V_{DD_HV_BALLAST} Added a new Note at the end of this section
		In section, Voltage monitor electrical characteristics
		 In table, Voltage monitor electrical characteristics: Removed "V_{LVD FLASH}" and "V_{LVD FLASH} during low power mode using
		LPBG as reference" rows
		 Updated Fall and Rise trimmed Minimum values for V_{HVD_LV_cold}
		In section, Supply current characteristics
		In table, Current consumption characteristics:
		 Updated the footnote mentioned in the Condition column of I_{DD_STOP} row
		Updated all TBD values In table Law Power Unit (LBL) Current consumption above staristics:
		 In table, Low Power Unit (LPU) Current consumption characteristics: Updated the typical value of LPU_STOP to 0.18 mA
		Updated all TBD values
		 In table, STANDBY Current consumption characteristics:
		Updated all TBD values
		In section, AC specifications @ 3.3 V Range
		In table, Functional Pad AC Specifications @ 3.3 V Range:
		Updated Rise/Fall Edge values
		In section, DC electrical specifications @ 3.3V Range
		In table, DC electrical specifications @ 3.3V Range:
		 Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, AC specifications @ 5 V Range
		In table, Functional Pad AC Specifications @ 5 V Range:
		Updated Rise/Fall Edge values
		 In section, DC electrical specifications @ 5 V Range
		In table, DC electrical specifications @ 5 V Range:
		 Updated Min and Max values for Pull_Ioh and Pull_Iol rows Updated Max value for Vol to 0.1 * VDD_HV_x
		In section, Reset pad electrical characteristics
		 In table, Functional reset pad electrical specifications: Updated parameter column for V_{IH}, V_{IL} and V_{HYS} rows
		• Updated Min and Max values for V_{IH} and V_{IL} rows
		 In section, PORST electrical specifications In table, PORST electrical specifications:
		 Updated Unit and Min/Max values for V_{IH} and V_{IL} rows
		. In contrast, land a subscience discuit and ADO companying share staristics
		 In section, Input equivalent circuit and ADC conversion characteristics In table, ADC conversion characteristics (for 12-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		 In table, ADC conversion characteristics (for 10-bit):
		 Updated "ADC Analog Pad (pad going to one ADC)" row
		In section, Analog Comparator (CMP) electrical specifications
		In table, Comparator and 6-bit DAC electrical specifications:
	MPC57	• Updated Min and Max values for Valo to ±47 mV 46C Microcontroller Datasneet Data Sheet, Rev. 5.1, 05/2017.
74		NXP Semiconductors
		In section, Main oscillator electrical characteristics

Table 51.	Revision	History ((continued)
-----------	----------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 4	9 March 2016	 In section, Voltage regulator electrical characteristics In table, Voltage regulator electrical specifications: Updated the footnote on V_{DD_HV_BALLAST}
Rev 5 27 February 2017		 In Family Comparison section: Updated the "MPC5746C Family Comparison" table. added "NVM Memory Map 1", "NVM Memory Map 2", and "RAM Memory Map" tables.
		 Updated the product version, flash memory size and optional fields information in Ordering Information section.
		 In Recommended Operating Conditions section, removed the note related to additional crossover current.
		 VDD_HV_C row added in "Voltage regulator electrical specifications" table in Voltage regulator electrical characteristics section.
		 In Voltage Monitor Electrical Characteristics section, updated the "Trimmed" Fall and Rise specs of VHVD_LV_cold parameter in "Voltage Monitor Electrical Characteristics" table.
		 In AC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table.
		 In DC Electrical Specifications: 3.3 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In AC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" in the table. In DC Electrical Specifications: 5 V Range section, changed the occurrences of "ipp_sre[1:0]" to "SIUL2_MSCRn.SRC[1:0]" and updated "Vol min and max" values in the table.
		 In "Flash memory AC timing specifications" table in Flash memory AC timing specifications section: Updated the "t_{psus}" typ value from 7 us to 9.4 us. Updated the "t_{psus}" max value from 9.1 us to 11.5 us.
		 Added "Continuous SCK Timing" table in DSPI timing section.
		 Added "ADC pad leakage" at 105°C TA conditions in "ADC conversion characteristics (for 12-bit)" table in ADC electrical specifications section.
		 In "STANDBY Current consumption characteristics" table in Supply current characteristics section: Updated the Typ and max values of IDD Standby current. Added IDD Standby3 current spec for FIRC ON.
		 Removed IVDDHV and IVDDLV specs in 16 MHz RC Oscillator electrical specifications section.
		 Added Reset Sequence section, with Reset Sequence Duration, BAF execution duration section, and Reset Sequence Distribution as its sub-sections.

Table continues on the next page ...

How to Reach Us:

Home Page: www.nxp.com

Web Support: www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5746C Rev. 5.1, 05/2017