

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	3MB (3M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746ck1mmj6r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 6. Recommended operating conditions ($V_{DD HV x} = 3.3 V$) (continued)

Symbol	Parameter	Conditions ¹	Min ²	Мах	Unit
T _A ⁸	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{SS\ HV}$ unless otherwise specified

- 2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
- 3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 4. Only applicable when supplying from external source.
- 5. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating.
- 6. VIN1_CMP_REF \leq VDD_HV_A
- 7. This supply is shorted VDD_HV_A on lower packages.
- 8. T_J =150°C. Assumes T_A =125°C
 - Assumes maximum θ JA of 2s2p board. See Thermal attributes

NOTE

If VDD_HV_A is in 5V range, it is necessary to use internal Flash supply 3.3V regulator. VDD_HV_FLA should not be supplied externally and should only have decoupling capacitor.

Table 7. Recommended operating conditions ($V_{DD_HV_x} = 5 V$)

Symbol	Parameter	Conditions ¹	Min ²	Мах	Unit
V _{DD_HV_A}	HV IO supply voltage		4.5	5.5	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage		3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.15	5.5	V
V _{DD_HV_ADC0}	HV ADC supply voltage	—	max(VDD_H V_A,VDD_H	5.5	V
VDD_HV_ADC1			V_B,VDD_H V_C) - 0.05		
V _{SS_HV_ADC0}	HV ADC supply ground		-0.1	0.1	V
V _{SS_HV_ADC1}					
V _{DD_LV} ⁴	Core supply voltage		1.2	1.32	V
V _{IN1_CMP_REF} ^{5, 6}	Analog Comparator DAC reference voltage		3.15	5.5 ⁵	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA
T _A ⁷	Ambient temperature under bias	f _{CPU} ≤ 160 MHz	-40	125	°C
TJ	Junction temperature under bias		-40	150	°C

1. All voltages are referred to $V_{\text{SS}\ \text{HV}}$ unless otherwise specified

2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.

3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally. This pin is decoupled with $C_{flash_{reg}}$.

- 5. 1. For VDD_HV_x, 1µf on each side of the chip
 - a. 0.1 μf close to each VDD/VSS pin pair.
 - b. 10 μf near for each power supply source
 - c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as specified by CFP_REG parameter.
 - For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
 amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
 specified by CFP_REG parameter
- 6. Only applicable to ADC1
- 7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If V_{DD_HV_BALLAST} is supplied from the same source as VDD_HV_A this condition is implicitly met):
 - During power-up, V_{DD_HV_BALLAST} must have met the min spec of 2.25V before VDD_HV_A reaches the POR_HV_RISE min of 2.75V.
 - During power-down, $V_{DD_HV_BALLAST}$ must not drop below the min spec of 2.25V until VDD_HV_A is below POR_HV_FALL min of 2.7V.

NOTE

For a typical configuration using an external ballast transistor with separate supply for VDD_HV_A and the ballast collector, a bulk storage capacitor (as defined in Table 8) is required on VDD_HV_A close to the device pins to ensure a stable supply voltage.

Extra care must be taken if the VDD_HV_A supply is also being used to power the external ballast transistor or the device is running in internal regulation mode. In these modes, the inrush current on device Power Up or on exit from Low Power Modes is significant and may case the VDD_HV_A voltage to drop resulting in an LVD reset event. To avoid this, the board layout should be optimized to reduce common trace resistance or additional capacitance at the ballast transistor collector (or VDD_HV_A pins in the case of internal regulation mode) is required. NXP recommends that customers simulate the external voltage supply circuitry.

In all circumstances, the voltage on VDD_HV_A must be maintained within the specified operating range (see Recommended operating conditions) to prevent LVD events.

Symbol	Parameter	State	Conditions	Configuration Threshold			Unit			
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	v
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled	ibled at Start		
2_cold	voltage		Trimmed			al	1.1400	1.1550	1.1750	V
	detecting at the	Rise	Untrimmed				Disabled	at Start		
	device pin		Trimmed				1.1600	1.1750	1.1950	V

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1}	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	_		147	mA
_, 0		2 x HV ADC supplies ^{4, 4}				
		T _a = 125°C ^{5, 5}				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		T _a = 105°C	—	—	142	mA
		T _a = 85 °C	_	—	137	mA

 Table 10.
 Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	—	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_{LV}} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		$V_{DD_{LV}} = 1.25 V$				

Table 10. Current consumption characteristics (continued)

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
IDD_HV_ADC_REF ^{10,}	ADC REF Operating current	T _a = 125 °C ⁵		200	400	μA
11, 11		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 105 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_HV_ADC_REF} = 5.5 V$				
		T _a = 85 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 5.5 V$				
		T _a = 25 °C	_	200	_	
		2 ADCs operating at 80 MHz				
		$V_{DD_{HV}ADC_{REF}} = 3.6 V$				
I _{DD_HV_ADCx} ¹¹	ADC HV Operating current	T _a = 125 °C ⁵	-	1.2	2	mA
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 5.5 V$				
		T _a = 25 °C	-	1	2	
		ADC operating at 80 MHz				
		$V_{DD_HV_ADC} = 3.6 V$				
IDD_HV_FLASH ¹²	Flash Operating current during read	T _a = 125 °C ⁵	—	40	45	mA
	access	3.3 V supplies				
		160 MHz frequency				
		T _a = 105 °C	—	40	45	
		3.3 V supplies				
		160 MHz frequency				
		T _a = 85 °C	—	40	45	
		3.3 V supplies				
		160 MHz frequency				

Table 10. Current consumption characteristics (continued)

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Single e200Z4 core cache disabled @80 MHz, no FlexRay, no ENET, 2 x CAN, 8 LINFlexD, 2 SPI, ADC0 and 1 used constantly, no HSM, Memory: 2M flash, 128K RAM RUN mode, Clocks: FIRC on, XOSC, PLL on, SIRC on for TOD, no 32KHz crystal (TOD runs off SIRC).
- 3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C. In case of internal ballast mode, it is expected that the external ballast is not mounted and BAL_SELECT_INT pin is tied to VDD_HV_A supply on board. Internal ballast can be used for all use cases with current consumption upto 150mA
- 4. The power consumption does not consider the dynamic current of I/Os
- 5. Tj=150°C. Assumes Ta=125°C
 - Assumes maximum θJA of 2s2p board. SeeThermal attributes
- e200Z4 core, 160MHz, cache enabled; e200Z2 core, 80MHz, no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 256K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- e200Z4 core, 120MHz, cache enabled; e200Z2 core, 60MHz; no FlexRay, no ENET, 7 CAN, 16 LINFlexD, 4 SPI, 1x ADC used constantly, includes HSM at start-up / periodic use, Memory: 3M flash, 128K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal

- e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM	$T_a = 25 \ ^{\circ}C$	-	10	—	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	—	10.5	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	—	11	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 \ ^{\circ}C^{2, 2}$	—	—	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	—	0.18	—	mA
		T _a = 85 °C	—	0.60	_	
		T _a = 105 °C	—	1.00	_	
		$T_a = 125 \ ^{\circ}C^2$	—	_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
STANDBY0	STANDBY with	T _a = 25 °C	—	71	—	μA
	8K RAM	T _a = 85 °C	_	125	700	
		T _a = 105 °C	—	195	1225	
		$T_a = 125 \text{ °C}^{2,2}$	—	314	2100	
STANDBY1	STANDBY with	T _a = 25 °C	_	72	_	μA
	64K RAM	T _a = 85 °C	—	140	715	
		T _a = 105 °C	—	225	1275	
		$T_{a} = 125 \text{ °C}^{2}$	—	358	2250	

4.7 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC specifications @ 3.3 V Range

Prop. De L>H	elay (ns) ¹ /H>L	Rise/Fall	Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
Min	Max	Min	Max		MSB,LSB
	6/6		1.9/1.5	25	11
2.5/2.5	8.25/7.5	0.8/0.6	3.25/3	50	
6.4/5	19.5/19.5	3.5/2.5	12/12	200	
2.2/2.5	8/8	0.55/0.5	3.9/3.5	25	10
0.090	1.1	0.035	1.1	asymmetry ²	
2.9/3.5	12.5/11	1/1	7/6	50	
11/8	35/31	7.7/5	25/21	200	
8.3/9.6	45/45	4/3.5	25/25	50	01 ³
13.5/15	65/65	6.3/6.2	30/30	200	
13/13	75/75	6.8/6	40/40	50	00 ³
21/22	100/100	11/11	51/51	200	
	2/2		0.5/0.5	0.5	NA
	Prop. De L>H Min 2.5/2.5 6.4/5 2.2/2.5 0.090 2.9/3.5 11/8 8.3/9.6 13.5/15 13/13 21/22	Prop. Delay (ns) ¹ L>H/H>L Min Max 6/6 2.5/2.5 8.25/7.5 6.4/5 19.5/19.5 2.2/2.5 8/8 0.090 1.1 2.9/3.5 12.5/11 11/8 35/31 8.3/9.6 45/45 13.5/15 65/65 13/13 75/75 21/22 100/100 2/2 2/2	Prop. Delay (ns) ¹ Rise/Fall L>H/H>L Min Min Max Min 6/6	Prop. Delay (ns)' L>H/H>LRise/Fall Edge (ns)MinMaxMinMax $6/6$ 1.9/1.5 $2.5/2.5$ $8.25/7.5$ $0.8/0.6$ $3.25/3$ $6.4/5$ $19.5/19.5$ $3.5/2.5$ $12/12$ $2.2/2.5$ $8/8$ $0.55/0.5$ $3.9/3.5$ 0.090 1.1 0.035 1.1 $2.9/3.5$ $12.5/11$ $1/1$ $7/6$ $11/8$ $35/31$ $7.7/5$ $25/21$ $8.3/9.6$ $45/45$ $4/3.5$ $25/25$ $13.5/15$ $65/65$ $6.3/6.2$ $30/30$ $13/13$ $75/75$ $6.8/6$ $40/40$ $21/22$ $100/100$ $11/11$ $51/51$ $2/2$ $2/2$ $0.5/0.5$	Prop. Delay (ns) ' L>H/H>LRise/Fall Edge (ns) Rise/Fall Edge (ns)Drive Load (pF)MinMaxMinMax $6/6$ 1.9/1.5252.5/2.58.25/7.50.8/0.63.25/350 $6.4/5$ 19.5/19.53.5/2.512/122002.2/2.58/80.55/0.53.9/3.5250.0901.10.0351.1asymmetry ² 2.9/3.512.5/111/17/65011/835/317.7/525/212008.3/9.645/454/3.525/255013.5/1565/656.3/6.230/3020013/1375/756.8/640/405021/22100/10011/1151/51200

Table 14. Functional Pad AC Specifications @ 3.3 V Range

1. As measured from 50% of core side input to Voh/Vol of the output

- This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF load. Required for the Flexray spec.
- 3. Slew rate control modes
- 4. Input slope = 2ns

NOTE

The specification given above is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The specification given above is measured between 20% / 80%.

5.3 AC specifications @ 5 V Range

Table 16. Functional Pad AC Specifications @ 5 V Range

Symbol	Prop. D	elay (ns) ¹	Rise/Fal	l Edge (ns)	Drive Load (pF)	SIUL2_MSCRn[SRC 1:0]
	L>I	H/H>L				
	Min	Max	Min	Max		MSB,LSB
pad_sr_hv		4.5/4.5		1.3/1.2	25	11
(output)		6/6		2.5/2	50	
(Output)		13/13		9/9	200	
		5.25/5.25		3/2	25	10
		9/8		5/4	50	
		22/22		18/16	200	
		27/27		13/13	50	01 ^{2, 2}
		40/40		24/24	200	
		40/40		24/24	50	00 ²
		65/65		40/40	200	
pad_i_hv/ pad_sr_hv		1.5/1.5		0.5/0.5	0.5	NA
(input)						

1. As measured from 50% of core side input to Voh/Vol of the output

2. Slew rate control modes

NOTE

The above specification is based on simulation data into an ideal lumped capacitor. Customer should use IBIS models for their specific board/loading conditions to simulate the expected signal integrity and edge rates of their system.

NOTE

The above specification is measured between 20% / 80%.

5.4 DC electrical specifications @ 5 V Range

Table 17. DC electrical specifications @ 5 V Range

Symbol	Parameter	Va	lue	Unit
		Min	Max	
Vih (pad_i_hv)	pad_i_hv Input Buffer High Voltage	0.7*VDD_HV_x	VDD_HV_x + 0.3	V

Table continues on the next page...

Symbol	Parameter	Va	Unit	
		Min	Max	
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VDD_HV_x - 0.3	0.35*VDD_HV_ x	V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VDD_HV_x - 0.3	0.40 * VDD_HV_x ¹	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x ¹	_	V
Vol	Output Low Voltage ⁷	—	0.2*VDD_HV_x	V
	Output Low Voltage ⁸		0.1*VDD_HV_x	
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA

 Table 17. DC electrical specifications @ 5 V Range (continued)

1. $VDD_HV_x = VDD_HV_A$, VDD_HV_B , VDD_HV_C

- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

I/O parameters

Table 18.	Functional reset	pad electrical s	pecifications
-----------	------------------	------------------	---------------

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Мах	
V _{IH}	CMOS Input Buffer High Voltage	—	0.65*V _D	_	V _{DD_HV_x}	V
			D_HV_x		+0.3	
VIL	CMOS Input Buffer Low Voltage	—	V _{DD_HV_}	—	0.35*V _{DD_HV}	V
			_x -0.3		_x	

Table continues on the next page...

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit		16 MHz		2.2		
	supply current		40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Мах	
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		—	1.5	us
T _{STJIT}	Cycle to cycle jitter		_	—	1.5	%
T _{LTJIT}	Long term jitter				0.2	%

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Long Term Jitter (Integer Mode)				40	+/-(N x J _{RJ})
Long Term jitter (Fractional Mode)				100	+/-(N x J _{RJ})

Table 28. Jitter calculation (continued)

1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.

2. This jitter component is added when the PLL is working in the fractional mode.

3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.

4. The value of N is dependent on the accuracy requirement of the application. See Table 29

Table 29. Percentage of sample exceeding specified value of jitter

N	Percentage of samples exceeding specified value of jitter (%)
1	31.73
2	4.55
3	0.27
4	6.30 × 1e-03
5	5.63 × 1e-05
6	2.00 × 1e-07
7	2.82 × 1e-10

6.3 Memory interfaces

6.3.1 Flash memory program and erase specifications

NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Memory interfaces

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	—	1,339.5	μs

Table 31. Flash memory Array Integrity and Margin Read specifications (continued)

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ^{1, 1}	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ^{2, 2}	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	—	Years
		Blocks with 100,000 P/E cycles.	20	—	Years
		Blocks with 250,000 P/E cycles.	10		Years

1. Program and erase supported across standard temperature specs.

2. Program and erase supported across standard temperature specs.

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

6.3.5 Flash memory AC timing specifications Table 33. Flash memory AC timing specifications

Symbol	Characteristic	Min	Typical	Max	Units
t _{psus}	Time from setting the MCR-PSUS bit until MCR-DONE bit is set to a 1.	_	9.4 plus four system clock periods	11.5 plus four system clock periods	μs
t _{esus}	Time from setting the MCR-ESUS bit until MCR-DONE bit is set to a 1.	_	16 plus four system clock periods	20.8 plus four system clock periods	μs
t _{res}	Time from clearing the MCR-ESUS or PSUS bit with EHV = 1 until DONE goes low.	—	_	100	ns
t _{done}	Time from 0 to 1 transition on the MCR-EHV bit initiating a program/erase until the MCR-DONE bit is cleared.	—	_	5	ns
t _{dones}	Time from 1 to 0 transition on the MCR-EHV bit aborting a program/erase until the MCR-DONE bit is set to a 1.		16 plus four system clock periods	20.8 plus four system clock periods	μs

Figure 8. DSPI classic SPI timing — master, CPHA = 0

Figure 9. DSPI classic SPI timing — master, CPHA = 1

Figure 14. DSPI modified transfer format timing – slave, CPHA = 0

Figure 15. DSPI modified transfer format timing — slave, CPHA = 1

Figure 16. DSPI PCS strobe (PCSS) timing

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Мах	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance		600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	—	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Figure 25. JTAG test clock input timing

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Max	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid	—	0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

Figure 28. Nexus output timing

Figure 29. Nexus EVTI Input Pulse Width

.

Table 51. R	levision	History (continued)
-------------	----------	-----------	------------

Rev. No.	Date	Substantial Changes
Rev 2	7 August 2015	In features:
	-	Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
		flash programming via a serial link (SCI)
		Updated FlexCAN3 with FD support
		Updated number of STMs to two.
		 III DIOCK diagram. Undated SRAM size from 128 KB to 256 KB
		In Family Comparison:
		 Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC5746C Family Comparison table.
		 In Ordering parts: Undated ordering parts diagram to include 100 MAPBGA information and optional
		fields.
		In table: Absolute maximum ratings
		Removed entry: 'V _{SS_HV} '
		 Added spec for 'V_{DD12}'
		Updated 'Max' column for 'V _{INA} '
		 Opdated tootnote for V_{DD_HV_ADC1_REF}. Added footnote to 'Conditions'. All voltages are referred to V_{oo} wy unless.
		otherwise specified
		 Removed footnote from 'Max', Absolute maximum voltages are currently
		maximum burn-in voltages. Absolute maximum specifications for device stress
		have not yet been determined.
		In section: Recommended operating conditions
		 Added opening text: "The following table describes the operating conditions " Added note: "Very ways and Very ways are all"
		 In table: Becommended operating conditions (VDD, HV x = 3.3 V) and
		(VDD HV $x = 5$ V)
		 Added footnote to 'Conditions' cloumn, (All voltages are referred to V_{SS HV}
		unless otherwise specified).
		Updated footnote for 'Min' column to Device will be functional down (and
		electrical specifications as per various datasheet parameters will be
		When voltage drops outside range for an LVD/HVD, device is reset
		Bemoved footnote for 'V_p_ HV A', 'V_p_ HV B', and 'V_p_ HV C' entry and
		updated the parameter column.
		Removed entry : 'V _{SS HV} '
		 Updated 'Parameter' column for 'V_{DD_HV_FLA}', 'V_{DD_HV_ADC1_REF}', 'V_{DD_LV}'
		Updated 'Min' column for 'V _{DD_HV_ADC0} ' 'V _{DD_HV_ADC1} '
		 Updated 'Parameter' 'Min' 'Max' columns for 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC1}' Updated footpote for 'V_{SS_W} to V_{SS_W} pips should never be
		grounded (through a small impedance). If these are not driven, they should
		only be left floating.
		 Removed row for symbol 'V_{SS_LV}' Removed featnests from 'Max' column of '\/
		 Removed foothole from Max column of V_{DD_HV_ADC0} and V_{DD_HV_ADC1}, (PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
		$V_{DD_HV_B}$ domain hence $V_{DD_HV_ADC1}$ should be within ±100 mV of
		 V_{DD_HV_B} when these channels are used for ADU_1). In table: Recommended operating conditions (V₋,, -3.3.V)
		• Removed footnote from V_{IN1} ONP REF. (Only applicable when supplying
		from external source).
		 In table: Recommended operating conditions (V_{DD-HV_x} = 5 V) Added spec for V
		 Added specific v_{IN1_CMP_REF} and corresponding toothotes.

Rev. No.	Date	Substantial Changes
		 In section: Voltage monitor electrical characteristics Updated description for Low Voltage detector block. Added note, BCP56, MCP68 and MJD31 are guaranteed ballasts. In table: Voltage regulator electrical specifications
		 In section: Supply current characteristics In table: Current consumption characteristics I_{DD_BODY_4}: Updated SYS_CLK to 120 MHz. I_{DD_BODY_4}: Updated Max for T_a= 105 °C fand 85 °C) I_{dd_STOP}: Added condition for T_a= 105 °C and removed Max value for T_a= 85 °C. I_{DD_HV_ADC_REF}: Added condition for T_a= 105 °C and 85 °C and removed Max value for T_a= 25 °C. I_{DD_HV_FLASH}: Added condition for T_a= 105 °C and 85 °C In table: Low Power Unit (LPU) Current consumption characteristics LPU_RUN and LPU_STOP: Added condition for T_a= 105 °C and 85 °C In table: STANDBY Current consumption characteristics Added condition for T_a= 105 °C for all entries.
		 In section: I/O parameters In table: Functional Pad AC Specifications @ 3.3 V Range Updated values for 'pad_sr_hv (output)' In table: DC electrical specifications @ 3.3V Range Updateded Min and Max values for Vih and Vil respectively. In table: Functional Pad AC Specifications @ 5 V Range Updated values for 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Updated values for 'pad_sr_hv (output)' In table DC electrical specifications @ 5 V Range Updated values for 'pad_sr_hv (output)'

Table 51. Revision History (continued)