

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	-
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746csk1ammh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 **Recommended operating conditions**

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	_	3.15	3.6	V
V _{DD_HV_B}					
V _{DD_HV_C}					
V _{DD_HV_FLA} ³	HV flash supply voltage		3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage		3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	-	-0.1	0.1	V
V _{DD_LV} ^{4, 5}	Core supply voltage	—	1.2	1.32	V
V _{IN1_CMP_REF} ^{6, 7}	Analog Comparator DAC reference voltage	_	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	—	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

Table continues on the next page...

Figure 2. Voltage regulator capacitance connection

NOTE

On BGA, VSS_LV and VSS_HV have been joined on substrate and renamed as VSS.

Table 8.	Voltage regulator	electrical	specifications
	U U		-

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{fp_reg} 1	External decoupling / stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2 ²	3	μF
	Combined ESR of external capacitor	_	0.001	_	0.03	Ohm
C _{lp/ulp_reg}	External decoupling / stability capacitor for internal low power regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.8	1	1.4	μF
	Combined ESR of external capacitor	_	0.001	—	0.1	Ohm
C _{be_fpreg} ³	Capacitor in parallel to base-	BCP68 and BCP56		3.3		nF
	emitter	MJD31		4.7		

Table continues on the next page ...

Table 8.	Voltage regulator	electrical s	pecifications ((continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{flash_} reg ⁴	External decoupling / stability capacitor for internal Flash regulators	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1.32	2.2	3	μF
	Combined ESR of external capacitor	—	0.001	_	0.03	Ohm
C _{HV_VDD_A}	VDD_HV_A supply capacitor ^{5, 5}	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_VDD_B}	VDD_HV_B supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_VDD_C}	VDD_HV_C supply capacitor ⁵	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1	_	_	μF
C _{HV_ADC0} C _{HV_ADC1}	HV ADC supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	1		_	μF
C _{HV_ADR} ⁶	HV ADC SAR reference supply decoupling capacitances	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	0.47	_	_	μF
V _{DD_HV_BALL}	FPREG Ballast collector supply voltage	When collector of NPN ballast is directly supplied by an on board supply source (not shared with VDD_HV_A supply pin) without any series resistance, that is, R _{C_BALLAST} less than 0.01 Ohm.	2.25	_	5.5	V
R _{C_BALLAST}	Series resistor on collector of FPREG ballast	When VDD_HV_BALLAST is shorted to VDD_HV_A on the board	_		0.1	Ohm
t _{SU}	Start-up time with external ballastafter main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	74	_	μs
t _{SU_int}	Start-up time with internal ballast after main supply (VDD_HV_A) stabilization	Cfp_reg = 3 μF	-	103	_	μs
t _{ramp}	Load current transient	lload from 15% to 55% $C_{f_{p} reg} = 3 \ \mu F$		1.0		μs

- Split capacitance on each pair VDD_LV pin should sum up to a total value of C_{fp_reg}
 Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and maximum values.
- 3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is recommended. The tolerance +/-20% is acceptable.
- 4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing inductance should be less than 1nH.

4.4 Voltage monitor electrical characteristics

Table 9.	Voltage	monitor	electrical	characteristics
----------	---------	---------	------------	-----------------

Symbol	Parameter	State	Conditions	Co	nfiguratio	on		Threshold		Unit								
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V								
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V								
	on reset detector		Trimmed			ve	-	-	-	V								
		Rise	Untrimmed	-			0.980	1.029	1.078	V								
			Trimmed				-	-	-	V								
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start										
d	voltage		Trimmed			al	1.325	1.345	1.375	V								
	detecting at	Rise	Untrimmed				Disabled	at Start	1									
	device pin		Trimmed				1.345	1.365	1.395	V								
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V								
2_hot	voltage		Trimmed			ve	1.1250	1.1425	1.1600	V								
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V								
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V								
V _{LVD_LV_PD}	, LV supply low	Fall	Untrimmed	Yes No	Yes No	No	Destructi	1.0800	1.1200	1.1600	V							
1_hot (BGFP)	voltage		Trimmed			ve	1.1140	1.1370	1.1600	V								
	detecting on the	Rise	Untrimmed						1.1000	1.140	1.1800	V						
	PD1 core (hot) area		Trimmed					1.1340	1.1570	1.1800	V							
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V								
0_hot (BGFP)	voltage		Trimmed			ve	1.1140	1.1370	1.1600	V								
	detecting on the	Rise	Untrimmed	1]]									1.1000	1.1400	1.1800	V
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V								
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V								
	on reset detector		Trimmed			ve	-	-	-	V								
		Rise	Untrimmed				2.7500	2.9000	3.0500	V								
			Trimmed				-	-	-	V								
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V								
0 ^{3, 3}	low voltage		Trimmed			ve	2.9780	3.0390	3.1000	V								
	range	Rise	Untrimmed	-			2.7800	2.9530	3.1250	V								
			Trimmed				3.0080	3.0690	3.1300	V								
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disabled	at Start										
1 [°]	low voltage					ve	4.0600	4.151	4.2400	V								
	range	Rise	Trimmed				Disabled	l at Start										
							4.1150	4.2010	4.3000	V								

Table continues on the next page ...

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_2} 6	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	—	_	246	mA
		$T_a = 125^{\circ}C^5$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 160MHz				
		T _a = 105°C		—	235	mA
		$T_a = 85^{\circ}C$	—	—	210	mA
I _{DD_BODY_3} 7	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴	_	_	181	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		$T_a = 85^{\circ}C$		—	171	mA
IDD_BODY_4 ⁸	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply + 2 x HV ADC supplies ⁴		—	264	mA
		T _a = 125 °C ⁵				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 120MHz				
		T _a = 105 °C	—	—	176	mA
		T _a = 85 °C	—	—	171	mA
I _{DD_STOP}	STOP mode Operating current	$T_{a} = 125 \ ^{\circ}C^{9}$	-	-	49	mA
		V _{DD_LV} = 1.25 V				
		T _a = 105 °C	—	10.6	—	
		V _{DD_LV} = 1.25 V				
		T _a = 85 °C		8.1	—	
		$V_{DD_{LV}} = 1.25 V$				
		T _a = 25 °C		4.6	—	
		$V_{DD_{LV}} = 1.25 V$				

Table 10. Current consumption characteristics (continued)

Table continues on the next page...

- e200Z4 core, 160MHz, cache enabled; e200Z4 core, 80MHz; HSM fully operational (Z0 core @80MHz) FlexRay, 5x CAN, 5x LINFlexD, 2x SPI, 1x ADC used constantly, 1xeMIOS (5 ch), Memory: 3M flash, 384K RAM, Clocks: FIRC on, XOSC on, PLL on, SIRC on, no 32KHz crystal
- 9. Assuming Ta=Tj, as the device is in Stop mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes.
- 10. Internal structures hold the input voltage less than V_{DD_HV_ADC_REF} + 1.0 V on all pads powered by V_{DDA} supplies, if the maximum injection current specification is met (3 mA for all pins) and V_{DDA} is within the operating voltage specifications.
- 11. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
- 12. This assumes the default configuration of flash controller register. For more details, refer to Flash memory program and erase specifications

Table 11. Low Power Unit (LPU) Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
LPU_RUN	with 256K RAM	$T_a = 25 \ ^{\circ}C$	-	10	—	mA
		SYS_CLK = 16MHz				
		ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF				
		T _a = 85 °C	—	10.5	_	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		T _a = 105 °C	—	11	—	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
		$T_a = 125 \ ^{\circ}C^{2, 2}$	—	—	26	
		SYS_CLK = 16MHz				
		ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON				
LPU_STOP	with 256K RAM	T _a = 25 °C	—	0.18	—	mA
		T _a = 85 °C	—	0.60	_	
		T _a = 105 °C	—	1.00	_	
		$T_{a} = 125 \text{ °C }^{2}$	—	_	10.6	

- 1. The content of the Conditions column identifies the components that draw the specific current.
- Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

Table 12. STANDBY Current consumption characteristics

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
STANDBY0	STANDBY with	T _a = 25 °C	—	71	—	μA
	8K RAM	T _a = 85 °C	_	125	700	
		T _a = 105 °C	—	195	1225	
		$T_a = 125 \text{ °C}^{2,2}$	—	314	2100	
STANDBY1	STANDBY with	T _a = 25 °C	_	72	_	μA
	64K RAM	T _a = 85 °C	—	140	715	
		T _a = 105 °C	—	225	1275	
		$T_{a} = 125 \text{ °C}^{2}$	—	358	2250	

Table continues on the next page...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	_	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		T _a = 105 °C	—	255	1350	
		$T_a = 125 \ ^{\circ}C^{2}$	—	396	2600	
STANDBY3	STANDBY with	$T_a = 25 \text{ °C}$	—	80	_	μA
	256K RAM	T _a = 85 °C	—	180	800	
		T _a = 105 °C	—	290	1425	
		$T_{a} = 125 \ ^{\circ}C^{2}$	—	465	2900	
STANDBY3	FIRC ON	T _a = 25 °C	—	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	—	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—	—	1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	—	ns
t _{conv}	Conversion time ⁴	80 MHz	700	—	_	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	—	—	
C _S ^{6, 6}	ADC input sampling capacitance	—	_	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—		—	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	_	—	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V		—	0.3	kΩ
	source	V_{REF} range = 3.15 to 3.6 V			875	Ω

Table continues on the next page...

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	_	V _{IN1_CMP_RE} F	V
V _{AIO}	Analog input offset voltage 1, 1	-47	_	47	mV
V _H	Analog comparator hysteresis ^{2, 2}	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	• CR0[HYSTCTR] = 01	_	40	70	mV
	• CR0[HYSTCTR] = 10	_	60	105	mV
	• CR0[HYSTCTR] = 11			100	
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	_	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	_	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	_	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage		10	16	μΑ
INL	6-bit DAC integral non-linearity	-0.5		0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8		0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Figure 7. Oscillator connections scheme

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Мах	Unit	
fxoschs	Oscillator frequency	FSP/LCP		8		40	MHz	
9mxoschs	Driver	LCP			23		mA/V	
	Transconduct ance	FSP			33			
V _{XOSCHS}	Oscillation Amplitude	IS Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
		nplitude	16 MHz		1.0			
			40 MHz		0.8			
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms	
			16 MHz		1			
			40 MHz]	0.5]		

Table continues on the next page...

Memory interfaces

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	_	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01	—	1,339.5	μs

Table 31. Flash memory Array Integrity and Margin Read specifications (continued)

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ^{1, 1}	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ^{2, 2}	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	—	Years
		Blocks with 100,000 P/E cycles.	20	—	Years
		Blocks with 250,000 P/E cycles.	10		Years

1. Program and erase supported across standard temperature specs.

2. Program and erase supported across standard temperature specs.

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP			5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.2 TxEN

Figure 17. TxEN signal

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	_	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

Figure 22. RMII/MII receive signal timing diagram

6.4.3.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

Num	Description	Min.	Max.	Unit
_	EXTAL frequency (RMII input clock RMII_CLK)	—	50	MHz
RMII1	RMII_CLK pulse width high	35%	65%	RMII_CLK period
RMII2	RMII_CLK pulse width low	35%	65%	RMII_CLK period
RMII3	RXD[1:0], CRS_DV, RXER to RMII_CLK setup	4	_	ns
RMII4	RMII_CLK to RXD[1:0], CRS_DV, RXER hold	2		ns
RMII7	RMII_CLK to TXD[1:0], TXEN invalid	4	_	ns
RMII8	RMII_CLK to TXD[1:0], TXEN valid	—	15	ns

 Table 42. RMII signal switching specifications

6.4.4 SAI electrical specifications

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device

no	Parameter	Value		Unit
		Min	Max	
	Operating Voltage	2.7	3.6	V
S1	SAI_MCLK cycle time	40	-	ns

Table 43. Master mode SAI Timing

Table continues on the next page...

No	Parameter	Value		Unit
		Min	Max	
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	-	28	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	-	ns
S17	SAI_RXD setup before SAI_BCLK	10	-	ns
S18	SAI_RXD hold after SAI_BCLK	2	-	ns

Table 44. Slave mode SAI Timing (continued)

Figure 24. Slave mode SAI Timing

6.5 Debug specifications

6.5.1 JTAG interface timing

Table 45. JTAG pin AC electrical characteristics ¹

#	Symbol	Characteristic	Min	Мах	Unit
1	t _{JCYC}	TCK Cycle Time ^{2, 2}	62.5	—	ns
2	t _{JDC}	TCK Clock Pulse Width	40	60	%
3	t _{TCKRISE}	TCK Rise and Fall Times (40% - 70%)	—	3	ns
4	t _{TMSS} , t _{TDIS}	TMS, TDI Data Setup Time	5	_	ns
5	t _{TMSH} , t _{TDIH}	TMS, TDI Data Hold Time	5		ns
6	t _{TDOV}	TCK Low to TDO Data Valid	—	20 ^{3, 3}	ns
7	t _{TDOI}	TCK Low to TDO Data Invalid	0	—	ns
8	t _{TDOHZ}	TCK Low to TDO High Impedance		15	ns
11	t _{BSDV}	TCK Falling Edge to Output Valid		600 ^{4, 4}	ns

Table continues on the next page ...

Reset sequence

Figure 35. Functional reset sequence long

Figure 36. Functional reset sequence short

The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

11.1 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
Rev 1	14 March 2013	Initial Release	

Table continues on the next page...

Revision History

Rev. No.	Date	Substantial Changes	
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".	
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes. 	
		 In AC Specifications@5V section, added two notes. 	
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table. 	
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table. 	
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us. 	
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table. 	

Table 51. Revision History (continued)

How to Reach Us:

Home Page: www.nxp.com

Web Support: www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5746C Rev. 5.1, 05/2017