

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	178
Program Memory Size	3MB (3M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746csk1ammj6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Block	diagram	4
2	Fami	ly compa	rison4
3	Orde	ring parts	
	3.1	Determi	ning valid orderable parts8
	3.2	Ordering	g Information9
4	Gene	eral	9
	4.1	Absolute	e maximum ratings9
	4.2	Recom	nended operating conditions11
	4.3	Voltage	regulator electrical characteristics13
	4.4	Voltage	monitor electrical characteristics17
	4.5	Supply	current characteristics18
	4.6	Electros	tatic discharge (ESD) characteristics22
	4.7	Electror	nagnetic Compatibility (EMC) specifications23
5	I/O p	arameter	s23
	5.1	AC spec	cifications @ 3.3 V Range23
	5.2	DC elec	trical specifications @ 3.3V Range24
	5.3	AC spec	cifications @ 5 V Range25
	5.4	DC elec	trical specifications @ 5 V Range25
	5.5	Reset p	ad electrical characteristics26
	5.6	PORST	electrical specifications
6	Perip	heral ope	erating requirements and behaviours28
	6.1	Analog.	
		6.1.1	ADC electrical specifications
		6.1.2	Analog Comparator (CMP) electrical
			specifications
	6.2	Clocks a	and PLL interfaces modules34
		6.2.1	Main oscillator electrical characteristics34
		6.2.2	32 kHz Oscillator electrical specifications36
		6.2.3	16 MHz RC Oscillator electrical
			specifications
		6.2.4	128 KHz Internal RC oscillator Electrical
			specifications
		6.2.5	PLL electrical specifications
	6.3	Memory	interfaces
		6.3.1	Flash memory program and erase
			specifications

	6.3.2	Flash memory Array Integrity and Margin
		Read specifications
	6.3.3	Flash memory module life specifications40
	6.3.4	Data retention vs program/erase cycles40
	6.3.5	Flash memory AC timing specifications41
	6.3.6	Flash read wait state and address pipeline
		control settings42
6.4	Commu	ication interfaces43
	6.4.1	DSPI timing43
	6.4.2	FlexRay electrical specifications49
		6.4.2.1 FlexRay timing49
		6.4.2.2 TxEN49
		6.4.2.3 TxD50
		6.4.2.4 RxD51
	6.4.3	Ethernet switching specifications52
	6.4.4	SAI electrical specifications53
6.5	Debug s	pecifications55
	6.5.1	JTAG interface timing55
	6.5.2	Nexus timing58
	6.5.3	WKPU/NMI timing60
	6.5.4	External interrupt timing (IRQ pin)61
Ther	mal attribu	tes61
7.1	Thermal	attributes61
Dime	nsions	
8.1	Obtainin	g package dimensions65
Pinou	uts	
9.1	Package	pinouts and signal descriptions
Rese	t sequend	e66
10.1	Reset se	quence66
	10.1.1	Reset sequence duration
	10.1.2	BAF execution duration
	10.1.3	Reset sequence description
Revis	sion Histo	у69
11.1	Revision	History

MPC5746C Microcontroller Datasheet Data Sheet, Rev. 5.1, 05/2017.

Family comparison

Table 1. MPC5746C Family Comparison1 (continued)

Feature	MPC5745B	MPC5744B	MPC5746B	MPC5744C	MPC5745C	MPC5746C					
l ² C	4	4	4		4						
SAI/I ² S	3	3	3	3							
FXOSC		8 - 40 MHz									
SXOSC			32	KHz							
FIRC			16	MHz							
SIRC			128	KHz							
FMPLL				1							
Low Power Unit (LPU)			Y	es							
FlexRay 2.1 (dual channel)	Yes, 128 MB	Yes, 128 MB	Yes, 128 MB		Yes, 128 MB						
Ethernet (RMII, MII + 1588, Muti queue AVB support)	1	1	1		1						
CRC				1							
MEMU			2	2							
STCU2				1							
HSM-v2 (security)			Opti	onal							
Censorship			Y	es							
FCCU				1							
Safety level			Specific functions	ASIL-B certifiable							
User MBIST			Y	es							
I/O Retention in Standby			Y	es							
GPIO ⁶			Up to 264 GPI an	d up to 246 GPIO							
Debug			JTA	GC,							
			cJT	AG							
Nexus		Z4 N3+ (C	Only available on 3	24BGA (developm	ent only))						
		Z2 N3+ (C	Only available on 3	24BGA (developm	ent only))						
Packages	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP	176 LQFP-EP					
	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA	256 BGA,					
	100 BGA	100 BGA	100 BGA	100 BGA	100 BGA	324 BGA (development only)					
						100 BGA					

1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package dependent.

- 2. Based on 125°C ambient operating temperature and subject to full device characterization.
- 3. Contact NXP representative for part number
- 4. Additional SWT included when HSM option selected
- 5. See device datasheet and reference manual for information on to timer channel configuration and functions.
- 6. Estimated I/O count for largest proposed packages based on multiplexing with peripherals.

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

General

Symbol	Parameter	State	Conditions	Configuration				Unit		
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes Function	Disabled	Disabled at Start			
2_cold	voltage monitoring, detecting at the device pin	Trimmed			al	1.1400	1.1550	1.1750	V	
		Rise	Untrimmed	-			Disabled	at Start		
			Trimmed				1.1600	1.1750	1.1950	V

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	_	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	—	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		$T_a = 105 \ ^{\circ}C$	—	255	1350	
		$T_a = 125 \ ^{\circ}C^2$	—	396	2600	
STANDBY3	STANDBY with	$T_a = 25 \text{ °C}$	—	80	_	μA
	256K RAM	T _a = 85 °C	—	180	800	
		$T_a = 105 \ ^{\circ}C$	—	290	1425]
		$T_a = 125 \ ^{\circ}C^2$	—	465	2900	1
STANDBY3	FIRC ON	$T_a = 25 \text{ °C}$	_	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

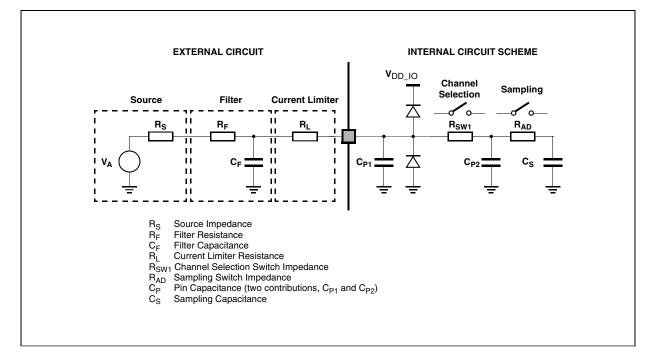
Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

5.2 DC electrical specifications @ 3.3V Range


Table 15. DC electrical specifications @ 3.3V Range

Symbol	Parameter	Va	alue	Unit	
		Min	Max		
Vih (pad_i_hv)	Pad_I_HV Input Buffer High Voltage	0.72*VDD_HV_ x	VDD_HV_x + 0.3	V	
Vil (pad_i_hv)	Pad_I_HV Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V	
Vhys (pad_i_hv)	Pad_I_HV Input Buffer Hysteresis	0.11*VDD_HV_ x		V	
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.67*VDD_HV_ x	VDD_HV_x + 0.3	V	
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VDD_HV_x - 0.3	0.35*VDD_HV_ x	V	
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.57 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V	
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VDD_HV_x - 0.3	0.4 * VDD_HV_x ¹	V	
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V	
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	15		μA	
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		55	μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	28		μA	
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		85	μA	
Pull_loh	Weak Pullup Current ⁴	15	50	μA	
Pull_lol	Weak Pulldown Current ⁵	15	50	μA	
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA	
Voh	Output High Voltage ⁶	0.8 *VDD_HV_x ¹	—	V	
Vol	Output Low Voltage ⁷	_	0.2 *VDD_HV_x ¹	V	
	Output Low Voltage ⁸		0.1 *VDD_HV_x		
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA	
lol_f	Full drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA	
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA	
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA	

- 1. VDD_HV_x = VDD_HV_A, VDD_HV_B, VDD_HV_C
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

Analog

6.1.1.1 Input equivalent circuit and ADC conversion characteristics

Figure 6. Input equivalent circuit

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel.

Table 20. ADC conversion characteristics (for 12-bit)

Symbol	Parameter	Conditions	Min	Typ ¹	Max	Unit
f _{CK}	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ² frequency)	_	15.2	80	80	MHz
f _s	Sampling frequency	80 MHz	—		1.00	MHz
t _{sample}	Sample time ³	80 MHz@ 100 ohm source impedance	250	—	_	ns
t _{conv}	Conversion time ⁴	80 MHz	700	_	—	ns
t _{total_conv}	Total Conversion time t _{sample} + t _{conv} (for standard and extended channels)	80 MHz	1.5 ⁵	_	_	μs
	Total Conversion time t _{sample} + t _{conv} (for precision channels)		1	_		
C _S ^{6, 6}	ADC input sampling capacitance	—	—	3	5	pF
C _{P1} ⁶	ADC input pin capacitance 1	—	—	_	5	pF
C _{P2} ⁶	ADC input pin capacitance 2	—	—	_	0.8	pF
R _{SW1} ⁶	Internal resistance of analog	V_{REF} range = 4.5 to 5.5 V	—	_	0.3	kΩ
	source	V _{REF} range = 3.15 to 3.6 V	—	_	875	Ω

Table continues on the next page...

6.1.2 Analog Comparator (CMP) electrical specifications Table 22. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)		_	250	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	5	11	μA
V _{AIN}	Analog input voltage	V_{SS}	-	V _{IN1_CMP_RE}	V
V _{AIO}	Analog input offset voltage ^{1, 1}	-47	_	47	mV
V _H	Analog comparator hysteresis ^{2, 2}	_	1	25	mV
	• CR0[HYSTCTR] = 00	_	20	50	mV
	 CR0[HYSTCTR] = 01 	_	40	70	mV
	 CR0[HYSTCTR] = 10 	_	60	105	mV
	• CR0[HYSTCTR] = 11				
t _{DHS}	Propagation Delay, High Speed Mode (Full Swing) ^{1,} 3, 3	_	-	250	ns
t _{DLS}	Propagation Delay, Low power Mode (Full Swing) ^{1, 3}	_	5	21	μs
	Analog comparator initialization delay, High speed mode ^{4, 4}	—	4		μs
	Analog comparator initialization delay, Low speed mode ⁴	—	100		μs
I _{DAC6b}	6-bit DAC current adder (when enabled)			- I	
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ⁵
DNL	6-bit DAC differential non-linearity	-0.8	_	0.8	LSB

1. Measured with hysteresis mode of 00

2. Typical hysteresis is measured with input voltage range limited to 0.6 to $V_{DD_{-HV_{-}A}}$ -0.6V

3. Full swing = VIH, VIL

4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

5. 1 LSB = $V_{reference}/64$

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Clocks and PLL interfaces modules

Symbol	Parameter	Mode	Conditions	Min	Тур	Max	Unit
	Oscillator	FSP	8 MHz		2.2		mA
	Analog Circuit supply current		16 MHz		2.2		
			40 MHz		3.2		
		LCP	8 MHz		141		uA
			16 MHz		252		
			40 MHz		518		
V _{IH}	Input High level CMOS Schmitt trigger	EXT Wave	Oscillator supply=3.3	1.95			V
V _{IL}	Input low level CMOS Schmitt trigger		Oscillator supply=3.3			1.25	V

 Table 23.
 Main oscillator electrical characteristics (continued)

1. Values are very dependent on crystal or resonator used and parasitic capacitance observed in the board.

2. Typ value for oscillator supply 3.3 V@27 °C

6.2.2 32 kHz Oscillator electrical specifications

Table 24. 32 kHz oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency		32		40	KHz
t _{cst}	Crystal Start-up Time ^{1, 2}				2	S

1. This parameter is characterized before qualification rather than 100% tested.

2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 16 MHz RC Oscillator electrical specifications Table 25. 16 MHz RC Oscillator electrical specifications

Symbol	Parameter	Conditions	Value			Unit
			Min	Тур	Max	1
F _{Target}	IRC target frequency	—	—	16	—	MHz
PTA	IRC frequency variation after trimming	—	-5	—	5	%
T _{startup}	Startup time	—		_	1.5	us
T _{STJIT}	Cycle to cycle jitter		—	—	1.5	%
T _{LTJIT}	Long term jitter		—	—	0.2	%

NOTE

The above start up time of 1 us is equivalent to 16 cycles of 16 MHz.

6.2.4 128 KHz Internal RC oscillator Electrical specifications Table 26. 128 KHz Internal RC oscillator electrical specifications

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
F _{oscu} ¹	Oscillator frequency	Calibrated	119	128	136.5	KHz
	Temperature dependence				600	ppm/C
	Supply dependence				18	%/V
	Supply current	Clock running			2.75	μA
		Clock stopped			200	nA

1. Vdd=1.2 V, 1.32V, T_a=-40 C, 125 C

6.2.5 PLL electrical specifications

Table 27. PLL electrical specifications

Parameter	Min	Тур	Max	Unit	Comments
Input Frequency	8		40	MHz	
VCO Frequency Range	600		1280	MHz	
Duty Cycle at pllclkout	48%		52%		This specification is guaranteed at PLL IP boundary
Period Jitter			See Table 28	ps	NON SSCG mode
TIE			See Table 28		at 960 M Integrated over 1MHz offset not valid in SSCG mode
Modulation Depth (Center Spread)	+/- 0.25%		+/- 3.0%		
Modulation Frequency			32	KHz	
Lock Time			60	μs	Calibration mode

Table 28. Jitter calculation

Type of jitter	Jitter due to Supply Noise (ps) J _{SN} ¹	Jitter due to Fractional Mode (ps) J _{SDM} ²	Jitter due to Fractional Mode J _{SSCG} (ps) ³	1 Sigma Random Jitter J _{RJ} (ps) ⁴	Total Period Jitter (ps)
Period Jitter	60 ps	3% of pllclkout1,2	Modulation depth		+/-(J_{SN} + J_{SDM} + J_{SSCG} + $N^{[4]}$ × J_{RJ})

Table continues on the next page...

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP	_	_	5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

No	Symbol	Parameter	Conditions	High Speed Mode		eed Mode Iow Speed mode		Unit
				Min	Мах	Min	Max]
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	NA	_	-2	—	ns
			Slave	4	—	6	_	
			Master (MTFE = 1, CPHA = 0)	-2	—	10 ¹	_	
			Master (MTFE = 1, CPHA = 1)	-2	_	-2	_	

Table 35. DSPI electrical specifications (continued)

1. SMPL_PTR should be set to 1

NOTE

Restriction For High Speed modes

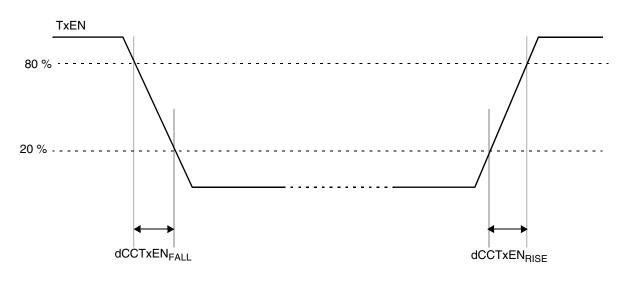
- DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master mode SCK
- DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave SCK frequency
- Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode
- For Master mode MTFE will be 1 for high speed mode
- For high speed slaves, their master have to be in MTFE=1 mode or should be able to support 15ns tSUO delay

NOTE

For numbers shown in the following figures, see Table 35

Table 36.	Continuous	SCK timing
-----------	------------	------------

Spec	Characteristics	Pad Drive/Load	Value	
			Min	Мах
tSCK	SCK cycle timing	strong/50 pF	100 ns	-
-	PCS valid after SCK	strong/50 pF	-	15 ns
-	PCS valid after SCK	strong/50 pF	-4 ns	-


DSPI	High speed SCK	High speed SIN	High speed SOUT
DSPI2	GPIO[78]	GPIO[76]	GPIO[77]
DSPI3	GPIO[100]	GPIO[101]	GPIO[98]
SPI1	GPIO[173]	GPIO[175]	GPIO[176]
SPI2	GPIO[79]	GPIO[110]	GPIO[111]

6.4.2 FlexRay electrical specifications

6.4.2.1 FlexRay timing

This section provides the FlexRay Interface timing characteristics for the input and output signals. It should be noted that these are recommended numbers as per the FlexRay EPL v3.0 specification, and subject to change per the final timing analysis of the device.

6.4.2.2 TxEN

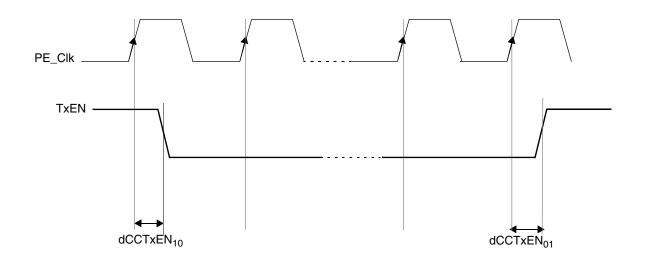


Figure 17. TxEN signal

Table 38.	TxEN output	characteristics ¹
-----------	-------------	------------------------------

Name	Description	Min	Max	Unit
dCCTxEN _{RISE25}	Rise time of TxEN signal at CC	—	9	ns
dCCTxEN _{FALL25}	Fall time of TxEN signal at CC	—	9	ns
dCCTxEN ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	_	25	ns
dCCTxEN ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge		25	ns

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxEN pin load maximum 25 pF

6.4.2.3 TxD

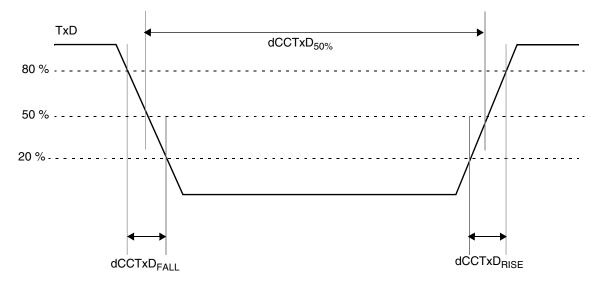


Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------

Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output		9 ²	ns

Table continues on the next page...

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Max	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance	—	600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15		ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

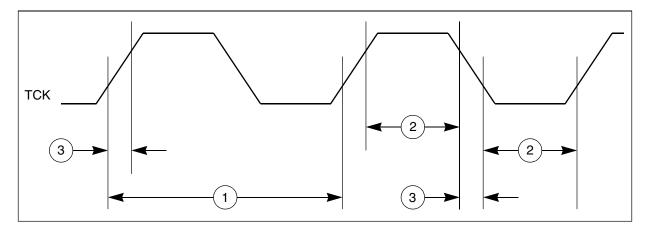


Figure 25. JTAG test clock input timing

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
_	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
	R _{0JB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

Pinouts

Package	NXP Document Number
176-pin LQFP-EP	98ASA00698D
256 MAPBGA	98ASA00346D
324 MAPBGA	98ASA10582D

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Reset sequence

10.1 Reset sequence

This section describes different reset sequences and details the duration for which the device remains in reset condition in each of those conditions.

10.1.1 Reset sequence duration

Table 49 specifies the reset sequence duration for the five different reset sequences described in Reset sequence description.

No.	Symbol	Parameter		T _{Reset}		Unit
			Min	Тур 1, 1	Max	
1	T _{DRB}	Destructive Reset Sequence, BIST enabled	6.2	7.3	-	ms
2	T _{DR}	Destructive Reset Sequence, BIST disabled	110	182	-	us
3	T _{ERLB}	External Reset Sequence Long, Unsecure Boot	6.2	7.3	-	ms
4	T _{FRL}	Functional Reset Sequence Long, Unsecure Boot	110	182	-	us
5	T _{FRS}	Functional Reset Sequence Short, Unsecure Boot	7	9	-	us

Table 49. RESET sequences

1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by an external reset generator.

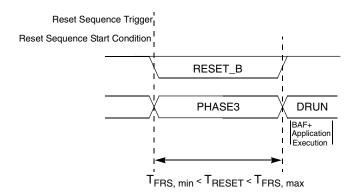


Figure 36. Functional reset sequence short

The reset sequences shown in Figure 35 and Figure 36 are triggered by functional reset events. RESET_B is driven low during these two reset sequences only if the corresponding functional reset source (which triggered the reset sequence) was enabled to drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE register in the device reference manual for more information.

11 Revision History

11.1 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev 1	14 March 2013	Initial Release

Table continues on the next page...

How to Reach Us:

Home Page: www.nxp.com

Web Support: www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5746C Rev. 5.1, 05/2017