

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore Processore200z2, e200z4Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size3MB (3M x 8)Program Memory TypeFLASH
Core Size32-Bit Dual-CoreSpeed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size3MB (3M x 8)
Speed80MHz/160MHzConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size3MB (3M x 8)
ConnectivityCANbus, Ethernet, I²C, LINbus, SAI, SPI, USB, USB OTGPeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size3MB (3M x 8)
PeripheralsDMA, LVD, POR, WDTNumber of I/O178Program Memory Size3MB (3M x 8)
Number of I/O178Program Memory Size3MB (3M x 8)
Program Memory Size 3MB (3M x 8)
Program Memory Type FLASH
EEPROM Size -
RAM Size 512K x 8
Voltage - Supply (Vcc/Vdd)3V ~ 5.5V
Data ConvertersA/D 80x10b, 64x12b
Oscillator Type Internal
Operating Temperature -40°C ~ 105°C (TA)
Mounting Type Surface Mount
Package / Case 256-LBGA
Supplier Device Package 256-MAPPBGA (17x17)

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Debug functionality
 - e200z2 core:NDI per IEEE-ISTO 5001-2008 Class3+
 - e200z4 core: NDI per IEEE-ISTO 5001-2008 Class 3+
- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Two System Timer Modules (STM)
 - Three Software Watchdog Timers (SWT)
 - 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7 (CJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL-B compliance
- Multiple operating modes
 - Includes enhanced low power operation

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
$\begin{array}{c} V_{DD_HV_A}, V_{DD_HV_B}, \\ V_{DD_HV_C}{}^{2, 3} \end{array}$	3.3 V - 5. 5V input/output supply voltage		-0.3	6.0	V
V _{DD_HV_FLA} ^{4, 5}	3.3 V flash supply voltage (when supplying from an external source in bypass mode)		-0.3	3.63	V
V _{DD_LP_DEC} ⁶	Decoupling pin for low power regulators ⁷	_	-0.3	1.32	V
V _{DD_HV_ADC1_REF} ⁸	3.3 V / 5.0 V ADC1 high reference voltage	—	-0.3	6	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	3.3 V to 5.5V ADC supply voltage	_	-0.3	6.0	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	3.3V to 5.5V ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ^{9, 10, 10, 11, 11, 12}	Core logic supply voltage	_	-0.3	1.32	V
V _{INA}	Voltage on analog pin with respect to ground (V _{SS_HV})	_	-0.3	Min (V _{DD_HV_x} , V _{DD_HV_ADCx} , V _{DD_ADCx_REF}) +0.3	V
V _{IN}	Voltage on any digital pin with respect to ground (V_{SS_HV})	Relative to V _{DD_HV_A} , V _{DD_HV_B} , V _{DD_HV_C}	-0.3	V _{DD_HV_x} + 0.3	V
I _{INJPAD}	Injected input current on any pin during overload condition	Always	-5	5	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{ramp}	Supply ramp rate	_	0.5 V / min	100V/ms	—
T _A ¹³	Ambient temperature	—	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C

Table 5.	Absolute	maximum	ratings
----------	----------	---------	---------

- 1. All voltages are referred to VSS_HV unless otherwise specified
- 2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
- Allowed V_{DD_HV_x} = 5.5–6.0 V for 60 seconds cumulative time with no restrictions, for 10 hours cumulative time device in reset, T_J= 150 °C, remaining time at or below 5.5 V.
- 4. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
- 5. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
- 6. This pin should be decoupled with low ESR 1 μ F capacitor.
- 7. Not available for input voltage, only for decoupling internal regulators
- 8. 10-bit ADC does not have dedicated reference and its reference is bonded to 10-bit ADC supply(VDD_HV_ADC0) inside the package.
- Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T_J = 150 °C, remaining time as defined in footnotes 10 and 11.
- 10. Allowed 1.38 1.45 V- for 10 hours cumulative time at maximum T_J = 150 °C, remaining time as defined in footnote 11.
- 11. 1.32 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at maximum T_J = 150 °C.
- 12. If HVD on core supply (V_{HVD LV x}) is enabled, it will generate a reset when supply goes above threshold.
- 13. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA for 2s2p board. See Thermal attributes

4.2 Recommended operating conditions

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted. The device operating conditions must not be exceeded in order to guarantee proper operation and reliability. The ranges in this table are design targets and actual data may vary in the given range.

NOTE

- For normal device operations, all supplies must be within operating range corresponding to the range mentioned in following tables. This is required even if some of the features are not used.
- If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be externally supplied using a 3.3V source. If VDD_HV_A is in 3.3V range, VDD_HV_FLA should be shorted to VDD_HV_A.
- VDD_HV_A, VDD_HV_B and VDD_HV_C are all independent supplies and can each be set to 3.3V or 5V. The following tables: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' and table 'Recommended operating conditions (VDD_HV_x = 5 V)' specify their ranges when configured in 3.3V or 5V respectively.

Symbol	Parameter	Conditions ¹	Min ²	Max	Unit
V _{DD_HV_A}	HV IO supply voltage	—	3.15	3.6	V
$V_{DD_HV_B}$					
$V_{DD_HV_C}$					
V _{DD_HV_FLA} ³	HV flash supply voltage	_	3.15	3.6	V
V _{DD_HV_ADC1_REF}	HV ADC1 high reference voltage	_	3.0	5.5	V
V _{DD_HV_ADC0} V _{DD_HV_ADC1}	HV ADC supply voltage	_	max(VDD_H V_A,VDD_H V_B,VDD_H V_C) - 0.05	3.6	V
V _{SS_HV_ADC0} V _{SS_HV_ADC1}	HV ADC supply ground	_	-0.1	0.1	V
V _{DD_LV} ^{4, 5}	Core supply voltage	_	1.2	1.32	V
V _{IN1_CMP_REF} ^{6, 7}	Analog Comparator DAC reference voltage	—	3.15	3.6	V
I _{INJPAD}	Injected input current on any pin during overload condition	_	-3.0	3.0	mA

Table 6. Recommended operating conditions ($V_{DD_HV_x} = 3.3 V$)

Table continues on the next page ...

4.4 Voltage monitor electrical characteristics

Table 9.	Voltage monitor electrical characteristics
----------	--

Symbol	Parameter	State	Conditions	Co	nfiguratio	n		Thresho	ld	Unit
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{POR_LV}	LV supply power	Fall	Untrimmed	Yes	No	Destructi	0.930	0.979	1.028	V
	on reset detector		Trimmed			ve	-	-	-	V
		Rise	Untrimmed				0.980	1.029	1.078	V
			Trimmed				-	-	-	V
V _{HVD_LV_col}	LV supply high	Fall	Untrimmed	No	Yes	Function	Disabled	at Start	1	
d	voltage monitoring,		Trimmed	-		al	1.325	1.345	1.375	V
	detecting at	Rise	Untrimmed				Disabled	at Start		
	device pin		Trimmed				1.345	1.365	1.395	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
2_hot	voltage monitoring,		Trimmed			ve	1.1250	1.1425	1.1600	V
	detecting on the	Rise	Untrimmed				1.1000	1.1400	1.1800	V
	PD2 core (hot) area		Trimmed				1.1450	1.1625	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No		1.0800	1.1200	1.1600	V
1_hot (BGFP)	t (BGFP) voltage monitoring, detecting on the		ve	1.1140	1.1370	1.1600	V			
		Rise	Untrimmed				1.1000	1.140	1.1800	V
	PD1 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	Yes	No	Destructi	1.0800	1.1200	1.1600	V
0_hot (BGFP)	voltage monitoring,		Trimmed			ve	1.1140	1.1370	1.1600	V
	detecting on the	Rise	Untrimmed	-			1.1000	1.1400	1.1800	V
	PD0 core (hot) area		Trimmed				1.1340	1.1570	1.1800	V
V _{POR_HV}	HV supply power	Fall	Untrimmed	Yes	No	Destructi	2.7000	2.8500	3.0000	V
	on reset detector		Trimmed	-		ve	-	-	-	V
		Rise	Untrimmed	-			2.7500	2.9000	3.0500	V
			Trimmed	-			-	-	-	V
V _{LVD_IO_A_L}	HV IO_A supply	Fall	Untrimmed	Yes	No	Destructi	2.7500	2.9230	3.0950	V
0 ^{3, 3}	low voltage monitoring - low		Trimmed			ve	2.9780	3.0390	3.1000	V
	range	Rise	Untrimmed				2.7800	2.9530	3.1250	V
			Trimmed				3.0080	3.0690	3.1300	V
V _{LVD_IO_A_H}	HV IO_A supply	Fall	Trimmed	No	Yes	Destructi	Disabled	at Start		
l ³	low voltage monitoring - high					ve	4.0600	4.151	4.2400	V
	range	Rise	Trimmed]			Disabled	at Start		
							4.1150	4.2010	4.3000	V

Table continues on the next page ...

General

Symbol	Parameter	State	Conditions	Co	nfiguratio	n		Threshol	d	Unit
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	V
V _{LVD_LV_PD}		oltage	Untrimmed No	No Yes	Yes	Function	Disabled	bled at Start		
2_cold			Trimmed			al	1.1400	1.1550	1.1750	V
		Rise	Untrimmed			ned			Disabled	at Start
					1.1600	1.1750	1.1950	V		

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

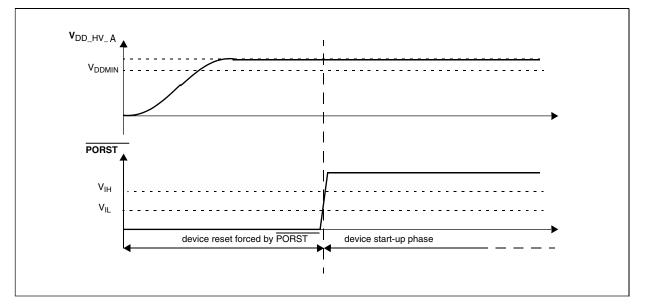
The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1} 2, 3	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	-	—	147	mA
2, 0		2 x HV ADC supplies ^{4, 4}				
		$T_{a} = 125^{\circ}C^{5, 5}$				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		$T_a = 105^{\circ}C$	—	—	142	mA
		T _a = 85 °C	—		137	mA

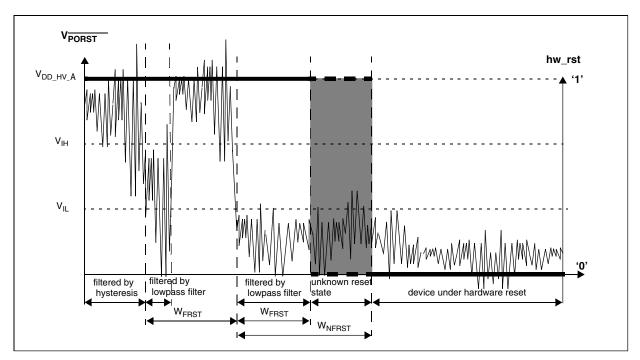
 Table 10.
 Current consumption characteristics

Table continues on the next page ...

Symbol	Parameter	Va	lue	Unit
		Min	Max	
Vil (pad_i_hv)	pad_i_hv Input Buffer Low Voltage	VDD_HV_x - 0.3	0.45*VDD_HV_ x	V
Vhys (pad_i_hv)	pad_i_hv Input Buffer Hysteresis	0.09*VDD_HV_ x		V
Vih_hys	CMOS Input Buffer High Voltage (with hysteresis enabled)	0.65* VDD_HV_x	VDD_HV_x + 0.3	V
Vil_hys	CMOS Input Buffer Low Voltage (with hysteresis enabled)	VDD_HV_x - 0.3	0.35*VDD_HV_ x	V
Vih	CMOS Input Buffer High Voltage (with hysteresis disabled)	0.55 * VDD_HV_x ^{1, 1}	VDD_HV_x ¹ + 0.3	V
Vil	CMOS Input Buffer Low Voltage (with hysteresis disabled)	VDD_HV_x - 0.3	0.40 * VDD_HV_x ¹	V
Vhys	CMOS Input Buffer Hysteresis	0.09 * VDD_HV_x ¹		V
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{2, 2} Low	23		μA
Pull_IIH (pad_i_hv)	Weak Pullup Current ^{3, 3} High		82	μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ³ Low	40		μA
Pull_IIL (pad_i_hv)	Weak Pulldown Current ² High		130	μA
Pull_loh	Weak Pullup Current ⁴	30	80	μA
Pull_lol	Weak Pulldown Current ⁵	30	80	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ⁶	0.8 * VDD_HV_x ¹	—	V
Vol	Output Low Voltage ⁷	_	0.2*VDD_HV_x	V
	Output Low Voltage ⁸		0.1*VDD_HV_x	
loh_f	Full drive loh ^{9, 9} (SIUL2_MSCRn.SRC[1:0] = 11)	18	70	mA
lol_f	Full drive lol ⁹ (SIUL2_MSCRn.SRC[1:0] = 11)	21	120	mA
loh_h	Half drive loh ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	9	35	mA
lol_h	Half drive Iol ⁹ (SIUL2_MSCRn.SRC[1:0] = 10)	10.5	60	mA


Table 17. DC electrical specifications @ 5 V Range (continued)

- 1. $VDD_HV_x = VDD_HV_A$, VDD_HV_B , VDD_HV_C
- 2. Measured when pad=0.69*VDD_HV_x
- 3. Measured when pad=0.49*VDD_HV_x
- 4. Measured when pad = 0 V
- 5. Measured when pad = VDD_HV_x
- 6. Measured when pad is sourcing 2 mA $\,$
- 7. Measured when pad is sinking 2 mA
- 8. Measured when pad is sinking 1.5 mA
- 9. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.


5.5 Reset pad electrical characteristics

The device implements a dedicated bidirectional RESET pin.

I/O parameters

Table 18.	Functional res	et pad electrical	specifications
-----------	----------------	-------------------	----------------

Symbol	Parameter	Conditions		Val	ue	Unit
			Min	Тур	Max	1
V _{IH}	CMOS Input Buffer High Voltage	—	0.65*V _D	_	V _{DD_HV_x}	V
			D_HV_x		+0.3	
VIL	CMOS Input Buffer Low Voltage	—	V _{DD_HV}		0.35*V _{DD_HV}	V
			_x -0.3		_x	

Table continues on the next page...

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Val	ue	Unit
			Min	Тур	Max	
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	_	mV
V _{DD_POR}	Minimum supply for strong pull-down activation	-	—	_	1.2	V
I _{OL_R}	Strong pull-down current ^{1, 1}	$\label{eq:Device under power-on reset} $V_{DD_HV_A} = V_{DD_POR}$$V_{OL} = 0.35^*V_{DD_HV_A}$$$	0.2	_	_	mA
		Device under power-on reset $V_{DD_{HV}A} = V_{DD_{POR}}$ $V_{OL} = 0.35^*V_{DD_{HV}IO}$	11	_		mA
W _{FRST}	RESET input filtered pulse	—	—	_	500	ns
W _{NFRST}	RESET input not filtered pulse	-	2000	—	_	ns
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	—	82	μA

 Table 18.
 Functional reset pad electrical specifications (continued)

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value			
		Min	Тур	Max		
W _{FPORST}	PORST input filtered pulse		—	200	ns	
WNFPORST	PORST input not filtered pulse	1000	—	_	ns	
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	_	V	
V _{IL}	Input low level	-	_	0.35 x V _{DD_HV_A}	V	

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

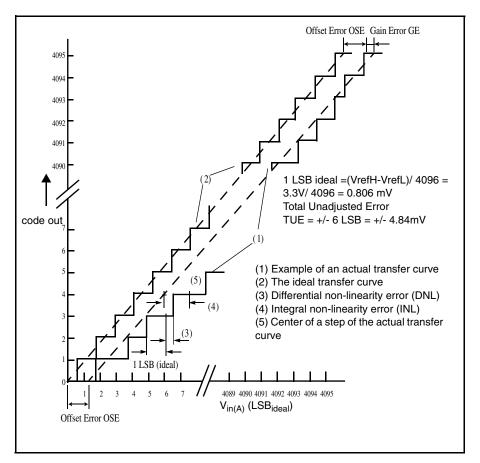


Figure 5. ADC characteristics and error definitions

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Memory interfaces

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
tai256kseq	Array Integrity time for sequential sequence on 256 KB block.	-	_	8192 x Tperiod x Nread	_
t _{mr16kseq}	Margin Read time for sequential sequence on 16 KB block.	73.81	_	110.7	μs
t _{mr32kseq}	Margin Read time for sequential sequence on 32 KB block.	128.43	_	192.6	μs
t _{mr64kseq}	Margin Read time for sequential sequence on 64 KB block.	237.65	—	356.5	μs
t _{mr256kseq}	Margin Read time for sequential sequence on 256 KB block.	893.01		1,339.5	μs

Table 31. Flash memory Array Integrity and Margin Read specifications (continued)

- Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The
 equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and
 Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires
 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the
 address pipeline set to 2, Nread would equal 4 (or 6 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

6.3.3 Flash memory module life specifications Table 32. Flash memory module life specifications

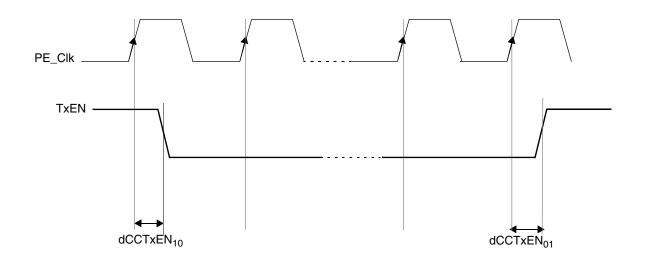
Symbol	Characteristic	Conditions	Min	Typical	Units
Array P/E cycles	Number of program/erase cycles per block for 16 KB, 32 KB and 64 KB blocks. ^{1, 1}	—	250,000	_	P/E cycles
	Number of program/erase cycles per block for 256 KB blocks. ^{2, 2}	—	1,000	250,000	P/E cycles
Data retention	Minimum data retention.	Blocks with 0 - 1,000 P/E cycles.	50	-	Years
		Blocks with 100,000 P/E cycles.	20	-	Years
		Blocks with 250,000 P/E cycles.	10	-	Years

1. Program and erase supported across standard temperature specs.

2. Program and erase supported across standard temperature specs.

6.3.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.


6.4 Communication interfaces

6.4.1 DSPI timing

Table 35. DSPI electrical specifications

No	Symbol	Parameter	Conditions	High Spo	eed Mode	low Spe	ed mode	Unit
				Min	Max	Min	Max	1
1	t _{SCK}	DSPI cycle	Master (MTFE = 0)	25	—	50	_	ns
		time	Slave (MTFE = 0)	40	_	60	_	
2	t _{csc}	PCS to SCK delay	_	16	—	—	-	ns
3	t _{ASC}	After SCK delay		16	—	—	_	ns
4	t _{SDC}	SCK duty cycle		t _{SCK} /2 - 10	t _{SCK} /2 + 10	_	-	ns
5	t _A	Slave access time	SS active to SOUT valid	_	40	_	_	ns
6	t _{DIS}	Slave SOUT disable time	_{SS} inactive to SOUT High-Z or invalid	_	10	_	_	ns
7	t _{PCSC}	PCSx to PCSS time		13	—	—	-	ns
8	t _{PASC}	PCSS to PCSx time		13	—	—	_	ns
9	t _{SUI}	Data setup	Master (MTFE = 0)	NA	—	20	_	ns
		time for inputs	Slave	2	—	2	_	
		inputs	Master (MTFE = 1, CPHA = 0)	15	—	8 ^{1, 1}	-	
			Master (MTFE = 1, CPHA = 1)	15	—	20	_	
10	t _{HI}	Data hold	Master (MTFE = 0)	NA	—	-5	_	ns
		time for inputs	Slave	4	—	4	_	
		inputs	Master (MTFE = 1, CPHA = 0)	0	—	11 ¹	_	
			Master (MTFE = 1, CPHA = 1)	0	—	-5	-	
11	t _{suo}	Data valid	Master (MTFE = 0)	_	NA	_	4	ns
		(after SCK edge)	Slave	—	15	_	23	
		euge)	Master (MTFE = 1, CPHA = 0)	—	4	—	16 ¹	
			Master (MTFE = 1, CPHA = 1)	_	4	—	4	

Table continues on the next page...

6.4.2.3 TxD

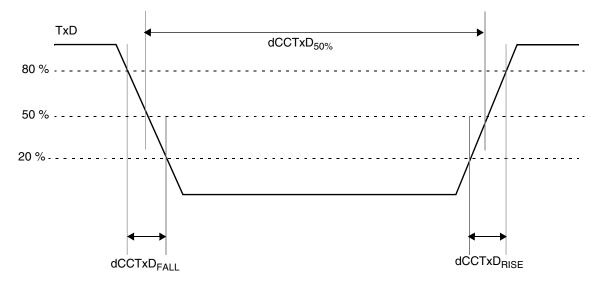
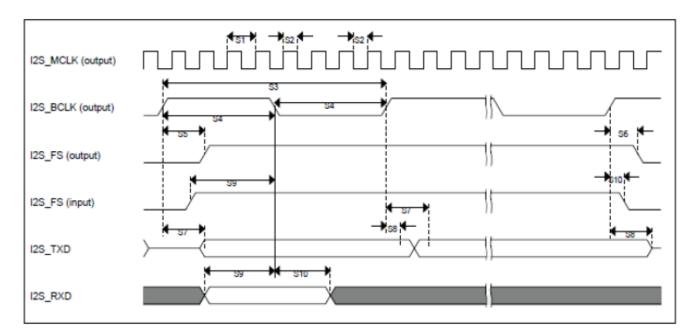
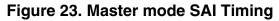


Figure 19. TxD Signal

Table 39.	TxD output characteristics
-----------	----------------------------


Name	Description ¹	Min	Max	Unit
dCCT _{xAsym}	Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100 ns)	-2.45	2.45	ns
dCCTxD _{RISE25} +dCCTx D _{FALL25}	Sum of Rise and Fall time of TxD signal at the output		9 ²	ns


Table continues on the next page...

FlexRay electrical specifications

no	Parameter	Va	Unit	
		Min	Max	
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	-	BCLK period
S4	SAI_BCLK pulse width high/low	45%	55%	ns
S5	SAI_BCLK to SAI_FS output valid	-	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	-	ns
S7	SAI_BCLK to SAI_TXD valid	-	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	-	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	28	-	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	-	ns

Table 43. Master mode SAI Timing (continued)

Table 44.	Slave	mode	SAI	Timing
-----------	-------	------	-----	--------

No	Parameter	Value		Unit
		Min	Мах	
	Operating Voltage	2.7	3.6	V
S11	SAI_BCLK cycle time (input)	80	-	ns
S12	SAI_BCLK pulse width high/low (input)	45%	55%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	-	ns
S14	SAI_FS input hold after SAI_BCLK	2	-	ns

Table continues on the next page...

Debug specifications

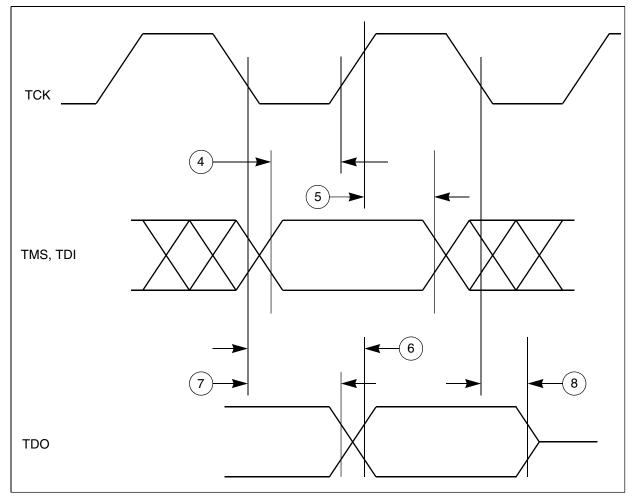


Figure 26. JTAG test access port timing

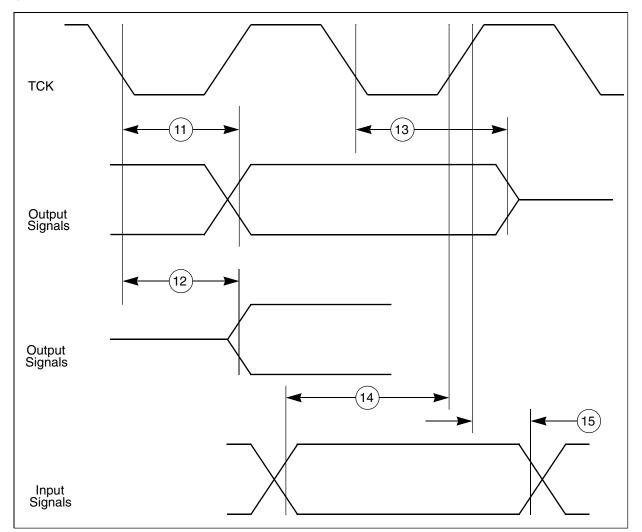


Figure 27. JTAG boundary scan timing

6.5.2 Nexus timing

Table 46. Nexus debug port timing 1

No.	Symbol	Parameter	Condition s	Min	Max	Unit
1	t _{MCYC}	MCKO Cycle Time	—	15.6	_	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	_	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	_	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time	—	8	_	ns

Table continues on the next page...

Table 46. Nexus debug port timing ¹ (continued)

No.	Symbol	Parameter	Condition s	Min	Мах	Unit
9	t _{NTDIH} , t _{NTMSH}	TDI, TMS Data Hold Time	_	5	_	ns
10	t _{JOV}	TCK Low to TDO/RDY Data Valid		0	25	ns

1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

- 2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
- 3. The system clock frequency needs to be four times faster than the TCK frequency.

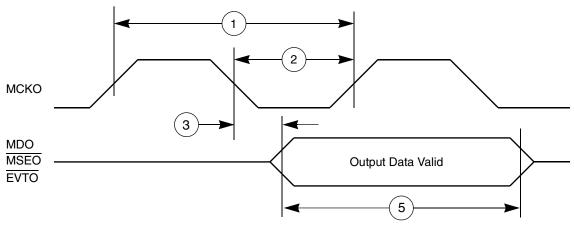


Figure 28. Nexus output timing

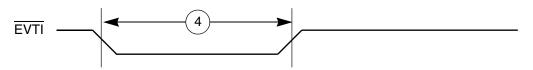


Figure 29. Nexus EVTI Input Pulse Width

6.5.4 External interrupt timing (IRQ pin) Table 48. External interrupt timing specifications

No.	Symbol	Parameter	Conditions	Min	Max	Unit
1	t _{IPWL}	IRQ pulse width low	—	3	—	t _{CYC}
2	t _{IPWH}	IRQ pulse width high	—	3	_	t _{CYC}
3	t _{ICYC}	IRQ edge to edge time		6		t _{CYC}

These values applies when IRQ pins are configured for rising edge or falling edge events, but not both.

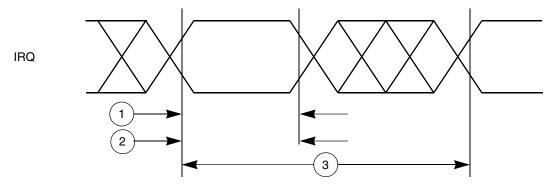


Figure 31. External interrupt timing

7 Thermal attributes

7.1 Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	50.7	°C/W	11, 22
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	24.2	°C/W	1, 2, 33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.1	°C/W	1, 3

Table continues on the next page ...

Thermal attributes

Board type	Symbol	Description	176LQFP	Unit	Notes
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	17.8	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	10.9	°C/W	44
_	R _{θJC}	Thermal resistance, junction to case	8.4	°C/W	55
_	Ψ _{JT}	Thermal resistance, junction to package top	0.5	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom	0.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	31.0	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	24.3	°C/W	1,2,33
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	23.5	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	20.1	°C/W	1,3

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
-	R _{θJC}	Thermal resistance, junction to case	7.9	°C/W	55
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	66
_	R _{0JB_CSB}	Thermal characterization parameter, junction to package bottom outside center (natural convection)	9.0	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	100 MAPBGA	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50.9	°C/W	1, 21,2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	27.0	°C/W	1,2,33
Single-layer (1s)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	38.0	°C/W	1,3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	22.2	°C/W	1,3

Table continues on the next page ...