

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z2, e200z4
Core Size	32-Bit Dual-Core
Speed	80MHz/160MHz
Connectivity	CANbus, Ethernet, I ² C, LINbus, SAI, SPI, USB, USB OTG
Peripherals	DMA, LVD, POR, WDT
Number of I/O	-
Program Memory Size	3MB (3M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 80x10b, 64x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5746csk1mmh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Debug functionality
 - e200z2 core:NDI per IEEE-ISTO 5001-2008 Class3+
 - e200z4 core: NDI per IEEE-ISTO 5001-2008 Class 3+
- Timer
 - 16 Periodic Interrupt Timers (PITs)
 - Two System Timer Modules (STM)
 - Three Software Watchdog Timers (SWT)
 - 64 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
- Device/board boundary Scan testing supported with Joint Test Action Group (JTAG) of IEEE 1149.1 and IEEE 1149.7 (CJTAG)
- Security
 - Hardware Security Module (HSMv2)
 - Password and Device Security (PASS) supporting advanced censorship and life-cycle management
 - One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
- Functional Safety
 - ISO26262 ASIL-B compliance
- Multiple operating modes
 - Includes enhanced low power operation

- 4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be left floating
- 5. VIN1_CMP_REF \leq VDD_HV_A
- 6. This supply is shorted VDD_HV_A on lower packages.
- 7. $T_J=150^{\circ}C$. Assumes $T_A=125^{\circ}C$
 - Assumes maximum θJA of 2s2p board. See Thermal attributes

4.3 Voltage regulator electrical characteristics

The voltage regulator is composed of the following blocks:

- Choice of generating supply voltage for the core area.
 - Control of external NPN ballast transistor
 - Generating core supply using internal ballast transistor
 - Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
- Internal generation of the 3.3 V flash supply when device connected in 5V applications
- External bypass of the 3.3 V flash regulator when device connected in 3.3V applications
- Low voltage detector low threshold (LVD_IO_A_LO) for V_{DD_HV_IO_A supply}
- Low voltage detector high threshold (LVD_IO_A_Hi) for V_{DD_HV_IO_A} supply
- Low voltage detector (LVD_FLASH) for 3.3 V flash supply (VDD_HV_FLA)
- Various low voltage detectors (LVD_LV_x)
- High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
- Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
- Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)

The following bipolar transistors¹ are supported, depending on the device performance requirements. As a minimum the following must be considered when determining the most appropriate solution to maintain the device under its maximum power dissipation capability: current, ambient temperature, mounting pad area, duty cycle and frequency for Idd, collector voltage, etc

^{1.} BCP56, MCP68 and MJD31are guaranteed ballasts.

General

Symbol	Parameter	State	Conditions	Configuration			Threshold			Unit
				Power Up	Mask Opt ^{2, 2}	Reset Type	Min	Тур	Max	v
V _{LVD_LV_PD}	LV supply low	Fall	Untrimmed	No	Yes	Function	Disabled at Start			
2_cold	voltage		Trimmed			al	1.1400	1.1550	1.1750	V
detecting at the	Rise	Untrimmed				Disabled	at Start			
	device pin		Trimmed				1.1600	1.1750	1.1950	V

 Table 9. Voltage monitor electrical characteristics (continued)

1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active will always generate a destructive reset.

2. Voltage monitors marked as non maskable are essential for device operation and hence cannot be masked.

3. There is no voltage monitoring on the V_{DD_HV_ADC0}, V_{DD_HV_ADC1}, V_{DD_HV_B} and V_{DD_HV_C} I/O segments. For applications requiring monitoring of these segments, either connect these to V_{DD_HV_A} at the PCB level or monitor externally.

4.5 Supply current characteristics

Current consumption data is given in the following table. These specifications are design targets and are subject to change per device characterization.

NOTE

The ballast must be chosen in accordance with the ballast transistor supplier operating conditions and recommendations.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
I _{DD_BODY_1}	RUN Body Mode Profile Operating current	LV supply + HV supply + HV Flash supply +	_		147	mA
_, 0		2 x HV ADC supplies ^{4, 4}				
		T _a = 125°C ^{5, 5}				
		V _{DD_LV} = 1.25 V				
		VDD_HV_A = 5.5V				
		SYS_CLK = 80MHz				
		T _a = 105°C	—	—	142	mA
		T _a = 85 °C	_	—	137	mA

 Table 10.
 Current consumption characteristics

Table continues on the next page...

General

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
STANDBY2	STANDBY with	T _a = 25 °C	_	75	_	μA
	128K RAM	T _a = 85 °C	—	155	730	
		T _a = 105 °C	—	255	1350	
		$T_a = 125 \ ^{\circ}C^2$	—	396	2600	
STANDBY3	STANDBY with	$T_a = 25 \text{ °C}$	—	80	_	μA
	256K RAM	T _a = 85 °C	—	180	800	
		T _a = 105 °C	—	290	1425	
		$T_{a} = 125 \ ^{\circ}C^{2}$	—	465	2900	
STANDBY3	FIRC ON	T _a = 25 °C	—	500	—	μA

Table 12. STANDBY Current consumption characteristics (continued)

1. The content of the Conditions column identifies the components that draw the specific current.

 Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal attributes

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
	(Human Body Model)	conforming to AEC- Q100-002			
V _{ESD(CDM)}	Electrostatic discharge	T _A = 25 °C	C3A	500	V
	(Charged Device Model)	conforming to AEC- Q100-011		750 (corners)	

Table 13. ESD ratings

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. Data based on characterization results, not tested in production.

I/O parameters

Table 18.	Functional reset	pad electrical s	pecifications
-----------	------------------	------------------	---------------

Symbol	Parameter	Conditions	Value		e	Unit
			Min	Тур	Мах	
V _{IH}	CMOS Input Buffer High Voltage	—	0.65*V _D	_	V _{DD_HV_x}	V
			D_HV_x		+0.3	
VIL	CMOS Input Buffer Low Voltage	—	V _{DD_HV_}	—	0.35*V _{DD_HV}	V
			_x -0.3		_x	

Table continues on the next page...

Peripheral operating requirements and behaviours

Symbol	Parameter	Conditions		Val	ue	Unit
			Min	Тур	Max	1
V _{HYS}	CMOS Input Buffer hysterisis	—	300	—	—	mV
V _{DD_POR}	Minimum supply for strong pull-down activation	—	_	-	1.2	V
I _{OL_R}	Strong pull-down current ^{1, 1}	Device under power-on reset	0.2	—	-	mA
		$V_{DD_HV_A} = V_{DD_POR}$				
		$V_{OL} = 0.35^* V_{DD_HV_A}$				
		Device under power-on reset	11	—	-	mA
		$V_{DD_HV_A} = V_{DD_POR}$				
		$V_{OL} = 0.35^* V_{DD_HV_IO}$				
W _{FRST}	RESET input filtered pulse	—	—	—	500	ns
W _{NFRST}	RESET input not filtered pulse		2000	_	_	ns
ll _{WPU} l	Weak pull-up current absolute value	RESET pin V _{IN} = V _{DD}	23	_	82	μA

 Table 18.
 Functional reset pad electrical specifications (continued)

1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.

5.6 PORST electrical specifications

Table 19. PORST electrical specifications

Symbol	Parameter		Value			
		Min	Тур	Max	1	
W _{FPORST}	PORST input filtered pulse	_	_	200	ns	
W _{NFPORST}	PORST input not filtered pulse	1000	_	—	ns	
V _{IH}	Input high level	0.65 x V _{DD_HV_A}	_	—	V	
V _{IL}	Input low level		_	0.35 x V _{DD_HV_A}	V	

6 Peripheral operating requirements and behaviours

6.1 Analog

6.1.1 ADC electrical specifications

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Figure 5. ADC characteristics and error definitions

6.2 Clocks and PLL interfaces modules

6.2.1 Main oscillator electrical characteristics

This device provides a driver for oscillator in pierce configuration with amplitude control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this way the EMI. Other benefits arises by reducing the power consumption. This Loop Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of traces between crystal and MCU.

An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also available in case of parasitic capacitances and cannot be reduced by using crystal with high equivalent series resistance. For this mode, a special care needs to be taken regarding the serial resistance used to avoid the crystal overdrive.

Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For EXT Wave, the drive is disabled and an external source of clock within CMOS level based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240 Kohms resistor and the feedback resistor remains active connecting XTAL through EXTAL by 1M resistor.

Figure 7. Oscillator connections scheme

Table 23.	Main oscillator	electrical	characteristics
-----------	-----------------	------------	-----------------

Symbol	Parameter	Mode	Conditions	Min	Тур	Мах	Unit
fxoschs	Oscillator frequency	FSP/LCP		8		40	MHz
9 _{mXOSCHS}	Driver	LCP			23		mA/V
	Transconduct ance	FSP			33		
V _{XOSCHS}	Oscillation	LCP ^{1, 2, 1, 2}	8 MHz		1.0		V _{PP}
	Amplitude		16 MHz		1.0		
			40 MHz		0.8		
T _{XOSCHSSU}	Startup time	FSP/LCP ¹	8 MHz		2		ms
			16 MHz		1		
			40 MHz]	0.5]	

Table continues on the next page...

Symbol	Characteristic ¹	Typ ²	Fac Progran	tory nming ^{3, 4}	F	Field Update		Unit
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C ≤T _A ≤30°C	-40°C ≤T _J ≤150°C	-40°C ≤T _J ≤150°C	≤ 1,000 cycles	≤ 250,000 cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		μs
t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
t _{16kpgm}	16 KB Block program time	34	45	50	40	1,000		ms
t _{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t _{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		ms
t _{256kers}	256 KB Block erase time	884	1,520	2,030	1,080	4,000	_	ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000	_	ms

Table 30. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

3. Conditions: \leq 150 cycles, nominal voltage.

- 4. Plant Programing times provide guidance for timeout limits used in the factory.
- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: $-40^{\circ}C \le T_J \le 150^{\circ}C$, full spec voltage.

6.3.2 Flash memory Array Integrity and Margin Read specifications Table 31. Flash memory Array Integrity and Margin Read specifications

Symbol	Characteristic	Min	Typical	Max ^{1, 1}	Units 2, 2
t _{ai16kseq}	Array Integrity time for sequential sequence on 16 KB block.		_	512 x Tperiod x Nread	
t _{ai32kseq}	Array Integrity time for sequential sequence on 32 KB block.	_	_	1024 x Tperiod x Nread	_
t _{ai64kseq}	Array Integrity time for sequential sequence on 64 KB block.	_	_	2048 x Tperiod x Nread	

Table continues on the next page ...

Symbol	Characteristic	Min	Typical	Max	Units
t _{drcv}	Time to recover once exiting low power mode.	16 plus seven system clock periods.	_	45 plus seven system clock periods	μs
t _{aistart}	Time from 0 to 1 transition of UT0-AIE initiating a Margin Read or Array Integrity until the UT0-AID bit is cleared. This time also applies to the resuming from a suspend or breakpoint by clearing AISUS or clearing NAIBP			5	ns
t _{aistop}	Time from 1 to 0 transition of UT0-AIE initiating an Array Integrity abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Array Integrity suspend request.	_	_	80 plus fifteen system clock periods	ns
t _{mrstop}	Time from 1 to 0 transition of UT0-AIE initiating a Margin Read abort until the UT0-AID bit is set. This time also applies to the UT0-AISUS to UT0-AID setting in the event of a Margin Read suspend request.	10.36 plus four system clock periods	_	20.42 plus four system clock periods	μs

 Table 33.
 Flash memory AC timing specifications (continued)

6.3.6 Flash read wait state and address pipeline control settings

The following table describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the flash module controller array at 125 °C.

 Table 34.
 Flash Read Wait State and Address Pipeline Control Combinations

Flash frequency	RWSC setting	APC setting
0 MHz < fFlash <= 33 MHz	0	0
33 MHz < fFlash <= 100 MHz	2	1
100 MHz < fFlash <= 133 MHz	3	1
133 MHz < fFlash <= 160 MHz	4	1

Name	Description ¹	Min	Max	Unit
dCCTxD ₀₁	Sum of delay between Clk to Q of the last FF and the final output buffer, rising edge	—	25	ns
dCCTxD ₁₀	Sum of delay between Clk to Q of the last FF and the final output buffer, falling edge	_	25	ns

Table 39. TxD output characteristics (continued)

1. All parameters specified for $V_{DD_HV_IOx}$ = 3.3 V -5%, +±10%, TJ = -40 °C / 150 °C, TxD pin load maximum 25 pF.

2. For $3.3 \text{ V} \pm 10\%$ operation, this specification is 10 ns.

*FlexRay Protocol Engine Clock

Figure 20. TxD Signal propagation delays

6.4.2.4 RxD

Table 40.	RxD	input	characteristic
-----------	-----	-------	----------------

Name	Description ¹	Min	Max	Unit
C_CCRxD	Input capacitance on RxD pin	—	7	pF
uCCLogic_1	Threshold for detecting logic high	35	70	%
uCCLogic_0	Threshold for detecting logic low	30	65	%
dCCRxD ₀₁	Sum of delay from actual input to the D input of the first FF, rising edge	_	10	ns
dCCRxD ₁₀	Sum of delay from actual input to the D input of the first FF, falling edge	_	10	ns

Debug specifications

Table 45. JTAG pin AC electrical characteristics ¹ (continued)

#	Symbol	Characteristic	Min	Мах	Unit
12	t _{BSDVZ}	TCK Falling Edge to Output Valid out of High Impedance	—	600	ns
13	t _{BSDHZ}	TCK Falling Edge to Output High Impedance		600	ns
14	t _{BSDST}	Boundary Scan Input Valid to TCK Rising Edge	15	—	ns
15	t _{BSDHT}	TCK Rising Edge to Boundary Scan Input Invalid	15	_	ns

- 1. These specifications apply to JTAG boundary scan only.
- 2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions. Refer to pad specification for allowed transition frequency
- 3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
- 4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Figure 25. JTAG test clock input timing

Debug specifications

Figure 26. JTAG test access port timing

Figure 27. JTAG boundary scan timing

6.5.2 Nexus timing

Table 46. Nexus debug port timing 1

No.	Symbol	Parameter	Condition	Min	Max	Unit
			S			
1	t _{MCYC}	MCKO Cycle Time	—	15.6	—	ns
2	t _{MDC}	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	MCKO Low to MDO, MSEO, EVTO Data Valid ²	—	-0.1	0.25	tMCYC
4	t _{EVTIPW}	EVTI Pulse Width	—	4	—	tTCYC
5	t _{EVTOPW}	EVTO Pulse Width	—	1	—	tMCYC
6	t _{TCYC}	TCK Cycle Time ³	—	62.5	—	ns
7	t _{TDC}	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS} , t _{NTMSS}	TDI, TMS Data Setup Time	_	8	_	ns

Table continues on the next page...

Thermal attributes

Board type	Symbol	Description	324 MAPBGA	Unit	Notes
—	R _{θJB}	Thermal resistance, junction to board	16.8	°C/W	44
_	R _{0JC}	Thermal resistance, junction to case	7.4	°C/W	55
_	Ψ _{JT}	Thermal characterization parameter, junction to package top natural convection	0.2	°C/W	66
_	Ψ _{JB}	Thermal characterization parameter, junction to package bottom natural convection	7.3	°C/W	77

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

Board type	Symbol	Description	256 MAPBGA	Unit	Notes
Single-layer (1s)	R _{eJA}	Thermal resistance, junction to ambient (natural convection)	42.6	°C/W	11, 22
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	26.0	°C/W	1,2,33
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31.0	°C/W	1,3
Four-layer (2s2p)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	21.3	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	12.8	°C/W	44

Table continues on the next page...

10.1.2 BAF execution duration

Following table specifies the typical BAF execution time in case BAF boot header is present at first location (Typical) and last location (worst case). Total Boot time is the sum of reset sequence duration and BAF execution time.

BAF execution duration	Min	Тур	Мах	Unit
BAF execution time (boot header at first location)	_	200	_	μs
BAF execution time (boot header at last location)	_	_	320	μs

Table 50. BAF execution duration

10.1.3 Reset sequence description

The figures in this section show the internal states of the device during the five different reset sequences. The dotted lines in the figures indicate the starting point and the end point for which the duration is specified in .

With the beginning of DRUN mode, the first instruction is fetched and executed. At this point, application execution starts and the internal reset sequence is finished.

The following figures show the internal states of the device during the execution of the reset sequence and the possible states of the RESET_B signal pin.

NOTE

RESET_B is a bidirectional pin. The voltage level on this pin can either be driven low by an external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external pullup resistor which is strong enough to overdrive the weak internal pulldown resistor. The rising edge on RESET_B in the following figures indicates the time when the device stops driving it low. The reset sequence durations given in are applicable only if the internal reset sequence is not prolonged by an external reset generator keeping RESET_B asserted low beyond the last Phase3. .

Table 51. R	evision	History ((continued)
-------------	---------	-----------	-------------

Rev. No.	Date	Substantial Changes
Rev 2	7 August 2015	In features:
	-	Updated BAF feature with sentence, Boot Assist Flash (BAF) supports internal
		flash programming via a serial link (SCI)
		Updated FlexCAN3 with FD support
		Updated number of STMs to two.
		 III DIOCK diagram. Undated SRAM size from 128 KB to 256 KB
		In Family Comparison:
		 Added note: All optional features (Flash memory, RAM, Peripherals) start with lowest number or address (e.g. FlexCAN0) and end at highest available number or address (e.g. MPC574xB/D have 6 CAN, ending with FlexCAN5). Revised MPC5746C Family Comparison table.
		 In Ordering parts: Undated ordering parts diagram to include 100 MAPBGA information and optional
		fields.
		In table: Absolute maximum ratings
		Removed entry: 'V _{SS_HV} '
		 Added spec for 'V_{DD12}'
		Updated 'Max' column for 'V _{INA} '
		 Opdated tootnote for V_{DD_HV_ADC1_REF}. Added footnote to 'Conditions'. All voltages are referred to V_{oo} wy unless.
		otherwise specified
		 Removed footnote from 'Max', Absolute maximum voltages are currently
		maximum burn-in voltages. Absolute maximum specifications for device stress
		have not yet been determined.
		In section: Recommended operating conditions
		 Added opening text: "The following table describes the operating conditions " Added note: "Very ways and Very ways are all"
		 In table: Becommended operating conditions (VDD, HV x = 3.3 V) and
		(VDD HV $x = 5$ V)
		 Added footnote to 'Conditions' cloumn, (All voltages are referred to V_{SS HV}
		unless otherwise specified).
		Updated footnote for 'Min' column to Device will be functional down (and
		electrical specifications as per various datasheet parameters will be
		When voltage drops outside range for an LVD/HVD, device is reset
		Bemoved footnote for 'V_p_ HV A', 'V_p_ HV B', and 'V_p_ HV C' entry and
		updated the parameter column.
		Removed entry : 'V _{SS HV} '
		 Updated 'Parameter' column for 'V_{DD_HV_FLA}', 'V_{DD_HV_ADC1_REF}', 'V_{DD_LV}'
		Updated 'Min' column for 'V _{DD_HV_ADC0} ' 'V _{DD_HV_ADC1} '
		 Updated 'Parameter' 'Min' 'Max' columns for 'V_{SS_HV_ADC0}' and 'V_{SS_HV_ADC1}' Updated footpote for 'V_{SS_W} to V_{SS_W} pips should never be
		grounded (through a small impedance). If these are not driven, they should
		only be left floating.
		 Removed row for symbol 'V_{SS_LV}' Removed featnests from 'Max' column of '\/
		 Removed foothole from Max column of V_{DD_HV_ADC0} and V_{DD_HV_ADC1}, (PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from
		$V_{DD_HV_B}$ domain hence $V_{DD_HV_ADC1}$ should be within ±100 mV of
		 V_{DD_HV_B} when these channels are used for ADU_1). In table: Recommended operating conditions (V₋,, -3.3.V)
		• Removed footnote from V_{IN1} ONP REF. (Only applicable when supplying
		from external source).
		 In table: Recommended operating conditions (V_{DD-HV_x} = 5 V) Added spec for V
		 Added specific v_{IN1_CMP_REF} and corresponding toothotes.

Table continues on the next page ...

Revision History

Rev. No.	Date	Substantial Changes
Rev 5.1	22 May 2017	Removed the Introduction section from Section 4 "General".
		 In AC Specifications@3.3V section, removed note related to Cz results and added two notes.
		 In AC Specifications@5V section, added two notes.
		 In ADC Electrical Specifications section, added spec value of "ADC Analog Pad" at Max leakage (standard channel)@ 105 C T_A in "ADC conversion characteristics (for 10-bit)" table.
		 In PLL Electrical Specifications section, updated the first footnote of "Jitter calculation" table.
		 In Analog Comparator Electrical Specifications section, updated the TDLS (propagation delay, low power mode) max value in "Comparator and 6-bit DAC electrical specifications" table to 21 us.
		 In Recommended Operating Conditions section, updated the footnote link to T_A in "Recommended operating conditions (V DD_HV_x = 5V)" table.

Table 51. Revision History (continued)

How to Reach Us:

Home Page: www.nxp.com

Web Support: www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017 NXP B.V.

Document Number: MPC5746C Rev. 5.1, 05/2017