

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	<u>.</u>
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c71-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

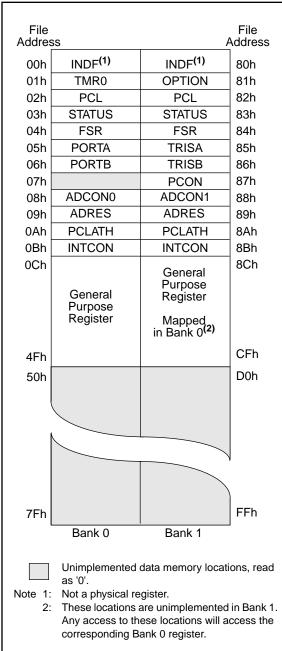
3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.


PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-5: PIC16C711 REGISTER FILE MAP

FIGURE 4-6: PIC16C715 REGISTER FILE MAP

File Address	3		File Address	
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h	
01h	TMR0	OPTION	81h	
02h	PCL	PCL	82h	
03h	STATUS	STATUS	83h	
04h	FSR	FSR		
05h	PORTA	TRISA		
06h	PORTB	TRISB		
07h			87h	
08h				
09h				
0Ah	PCLATH	PCLATH	8Ah	
0Bh	INTCON	INTCON	8Bh	
0Ch	PIR1	PIE1	8Ch	
0Dh			8Dh	
0Eh		PCON	8Eh	
0Fh			8Fh	
10h			90h	
11h			91h	
12h				
13h			93h	
14h			94h	
15h			95h	
16h			96h	
17h				
18h			98h	
19h			99h	
1Ah			9Ah	
1Bh			9Bh	
1Ch			9Ch	
1Dh			9Dh	
1Eh	ADRES		9Eh	
1Fh	ADCON0	ADCON1	9Fh	
20h	General Purpose Register	General Purpose Register	A0h	
	rtogiotor		BFh	
			C0h	
l				
7Fh	Deels	Bank 1	_ FFh	
	Bank 0	Bank 1		
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.				

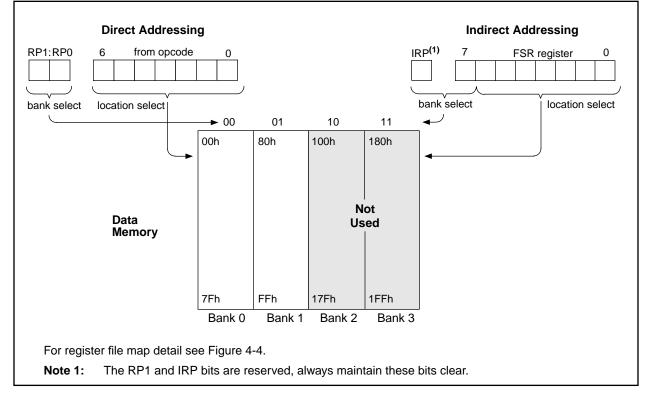
Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)

4.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movwf clrf incf	0x20 FSR INDF FSR,F FSR,4 NEXT	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next</pre>
CONTINUE			
	:		;yes continue

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

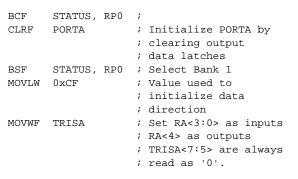
5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

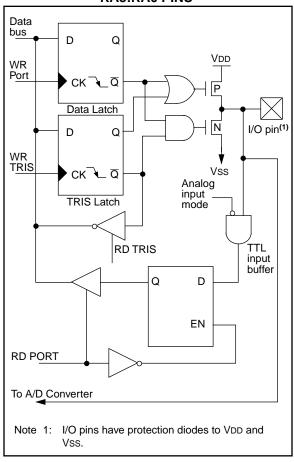
The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.


Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

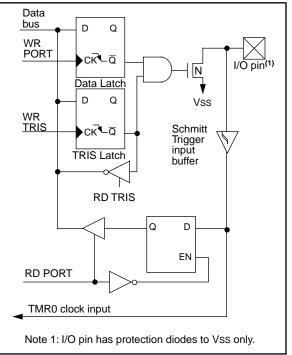

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

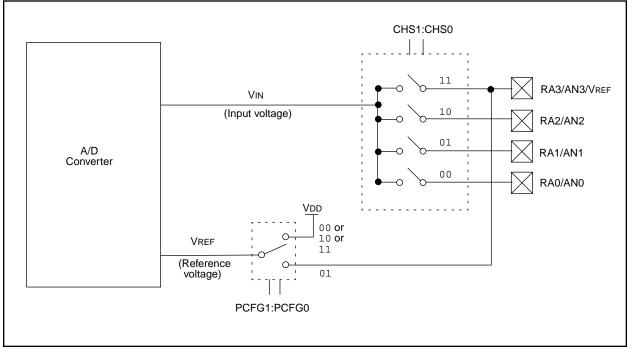
FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.


2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

7.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 µs for all other PIC16C71X devices

Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD VS. DEVICE OPERATING FREQUENCIES, PIC16C71

AD Cloc	k Source (TAD)	Device Frequency					
Operation	ADCS1:ADCS0	20 MHz	333.33 kHz				
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 µs	
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs	24 μs (3)	
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 µs	32.0 μs ⁽³⁾	96 μs ⁽³⁾	
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾	

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715

AD Clock	Source (TAD)		Device Frequency				
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs		
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	1.6 μs	6.4 μs	25.6 μs (3)	96 μs (3)		
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

2: These values violate the minimum required TAD time.

- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13	- -	—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpler	nented	: Read	as '1'										
bit 4:	CP0: Code protection bit 1 = Code protection off 0 = All memory is code protected, but 00h - 3Fh is writable													
bit 3:	PWRTE: 1 = Power 0 = Power	-up Tin	ner ena	bled	le bit									
bit 2:	WDTE: W 1 = WDT 0 = WDT	enabled	ł	Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC c 10 = HS c 01 = XT c 00 = LP o	oscillato oscillato oscillato	or r	tor Sele	ection b	vits								

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:					
Mode	Freq	OSC2			
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF		
	se values are f es at bottom of p	ior design guidar bage.	nce only. See		
Resonator	rs Used:				
455 kHz	Panasonic E	FO-A455K04B	± 0.3%		
2.0 MHz	Murata Erie (CSA2.00MG	± 0.5%		
4.0 MHz	Murata Erie (CSA4.00MG	± 0.5%		
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%				
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%				
All reso	onators used did	d not have built-in	capacitors.		

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
These	values are	for declars avide	nee entry Coo

These values are for design guidance only. See notes at bottom of page.

Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	\pm 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

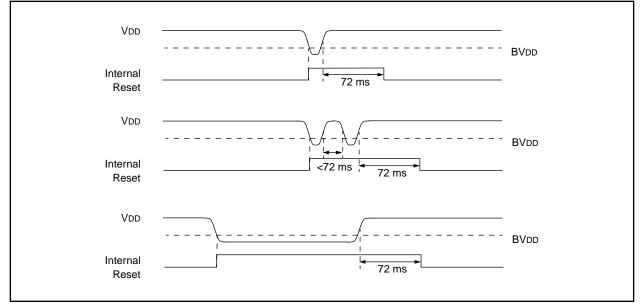
8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

9.1 Instruction Descriptions

	•					
ADDLW	Add Lite	ral and \	N			
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \le k \le 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Encoding:	11	111x	kkkk	kkkk		
Description:	The conter added to the result is play	ne eight b	it literal 'k'	and the		
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode Read Process Write literal 'k' data W					
Example:	ADDLW $0 \ge 15$ Before Instruction $W = 0 \ge 10$ After Instruction $W = 0 \ge 25$					
ADDWF	Add W a	nd f				
Syntax:	[<i>label</i>] Al	DDWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	7				
Operation:	(W) + (f) -	ightarrow (dest)				
Status Affected:	C, DC, Z					
Encoding:	00	0111	dfff	ffff		
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the					

Encoding:	00	0111	dfff	ffff		
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to Dest		
Example	ADDWF	FSR,	0			
	Before In					
	W = 0x17 FSR = 0xC2					
	After Instruction					
		W = FSR =	0xD9 0xC2			

ANDLW	AND Literal with W					
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \le k \le 2$	55				
Operation:	(W) .ANE	D. (k) \rightarrow (W)			
Status Affected:	Z					
Encoding:	11 1001 kkkk kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal "k"	Process data	Write to W		
Example	ANDLW	0x5F				
	Before In	struction	0xA3			
	After Inst	•• –	UXAU			
		= W	0x03			

ANDWF	AND W with f					
Syntax:	[<i>label</i>] A	[<i>label</i>] ANDWF f,d				
Operands:	$0 \le f \le 12$ $d \in [0,1]$	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .ANE	D. (f) \rightarrow (c	dest)			
Status Affected:	Z					
Encoding:	00	0101	dfff	ffff		
Description:	'd' is 0 the	result is a 'd' is 1 the	with regist stored in th e result is s	ie W		
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to Dest		
Example	ANDWF	FSR,	1			
	Before In					
	W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02					

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear		
Syntax:	[<i>label</i>] BCF f,b	Syntax:	[<i>label</i>] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	0 ightarrow (f)	Operation:	skip if (f) = 0		
Status Affected:	None	Status Affected:	None		
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff		
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '1' then the next		
Words:	1		instruction is executed. If bit 'b', in register 'f', is '0' then the next		
Cycles:	1		instruction is discarded, and a NOP is		
Q Cycle Activity:	Q1 Q2 Q3 Q4		executed instead, making this a 2TCY instruction.		
	Decode Read register 'f' Write register 'f'	Words: Cycles:	1 1(2)		
Example	BCF FLAG REG, 7	Q Cycle Activity:	Q1 Q2 Q3 Q4		
_//01/19/0	Before Instruction		Decode Read Process NOP register 'f'		
	FLAG_REG = 0xC7 After Instruction	If Skip:	(2nd Cycle)		
	$FLAG_REG = 0x47$	·	Q1 Q2 Q3 Q4		
			NOP NOP NOP NOP		
		Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •		

•						
Before Instruction						
PC = address	HERE					
After Instruction						
if $FLAG < 1 > = 0$,						

	0,	
PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f					
Syntax:	[<i>label</i>] BS	[<i>label</i>] BSF f,b				
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$1 \rightarrow (f < b;$	>)				
Status Affected:	None					
Encoding:	01	01bb	bfff	ffff		
Description:	Bit 'b' in re	gister 'f' is	s set.			
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A					

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	[<i>label</i>] CALL k		
Operands:	$0 \le f \le 12$				Operands:	$0 \le k \le 2047$			
	0 ≤ b < 7				Operation:	(PC)+ 1-	(PC)+ 1 \rightarrow TOS,		
Operation:	skip if (f<	:b>) = 1					$k \rightarrow PC < 10:0>,$		
Status Affected:	None	None				,	$(PCLATH<4:3>) \rightarrow PC<12:11>$		
Encoding:	01	11bb	bfff	ffff	Status Affected:	None			
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk
	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.			Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the sta address is The upper	ck. The s loaded [·] bits of	
Words:	1							rom PCLA instruction	
Cycles:	1(2)				Words:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2			
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4	1		Push PC to Stack		
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE	
	TRUE	•				Before Ir			
		•				After Ins		Address HE	RE
	Before In	struction					-	ddress TH	
			address H	IERE			TOS = A	Address HE	RE+1
	After Inst	ruction if FLAG<1>	- 0						
		-	> = 0, address F≠	ALSE					
		if FLAG<1> PC =	,						
		FU = 1	address TF	KUE					

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

Applicable Devices 710 71 711 715

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, Ioк (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD	- VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C710-04 PIC16C711-04	PIC16C710-10 PIC16C711-10	PIC16C710-20 PIC16C711-20	PIC16LC710-04 PIC16LC711-04	PIC16C710/JW PIC16C711/JW
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq:20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 10 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5.0 μA max. at 3.0V Freq: 200 kHz max.

Applicable Devices 710 71 711 715

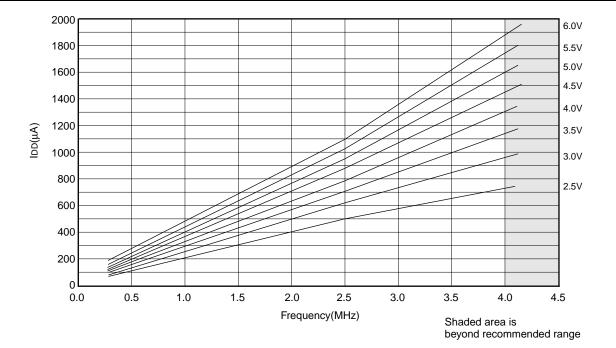
11.2 **DC Characteristics:** PIC16LC710-04 (Commercial, Industrial, Extended) PIC16LC711-04 (Commercial, Industrial, Extended)

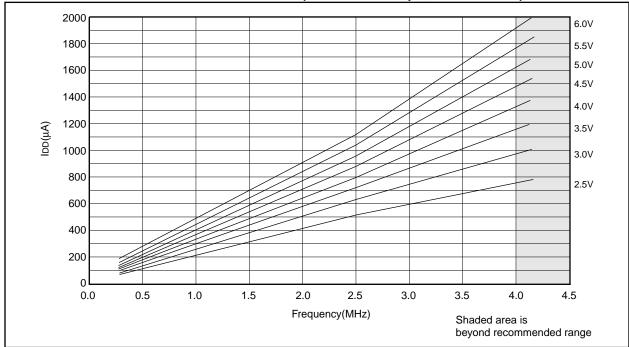
DC CHAF	RACTERISTICS			ard Ope		ure 0° -4	itions (unless otherwise stated)C \leq TA \leq +70°C (commercial)0°C \leq TA \leq +85°C (industrial)0°C \leq TA \leq +125°C (extended)
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B D022	Power-down Current (Note 3) Brown-out Reset		- - -	7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, 0°C to +70°C VDD = 3.0V, WDT disabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +125°C ROB enabled VDD = 5.0V
D023	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

Applicable Devices 710 71 711 715

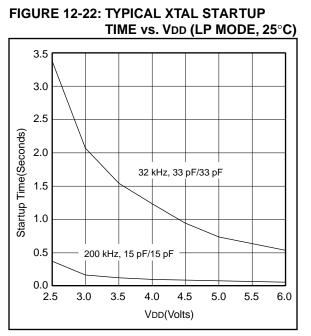
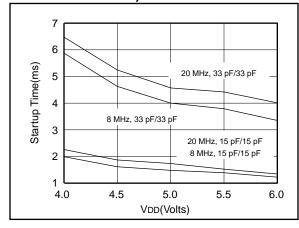
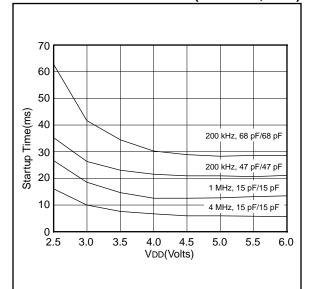




FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

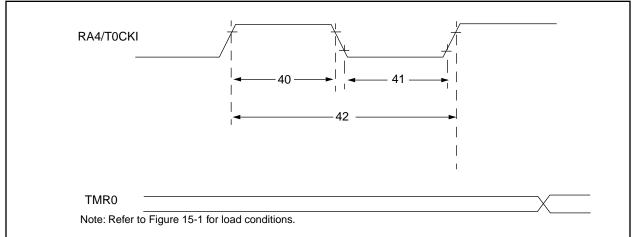


TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

		A B	a b
Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
ХТ	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
Crystals Used			
32 kHz	Epson C-001R32.768K-A		± 20 PPM
200 kHz	STD XTL 200.000KHz		± 20 PPM
1 MHz	ECS ECS-10-13-1		± 50 PPM
4 MHz	ECS ECS-40-20-1		± 50 PPM
8 MHz	EPSON CA	EPSON CA-301 8.000M-C	
20 MHz	EPSON CA-301 20.000M-C		± 30 PPM

Applicable Devices 710 71 711 715

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	TtOH	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	-	_	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet parameter 42
			With Prescaler	10	-	_	ns	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-		ns	N = prescale value (2, 4,, 256)
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

RA2/AN2		a
RA3/AN3/VREF		-
RA4/T0CKI		9
RB0/INT		9
RB1		-
		-
RB2		9
RB3		. 9
RB4		
		-
RB5		9
RB6		9
RB7		a
		-
VDD		
Vss		9
Pinout Descriptions		
PIC16C71		~
PIC16C710		9
PIC16C711		9
PIC16C715		-
PIR1 Register		21
POP		23
POR	53	51
Oscillator Start-up Timer (OST)	47,	53
Power Control Register (PCON)		54
Power-on Reset (POR)	3 57	58
	, 07, 47	50
Power-up Timer (PWRT)		
Time-out Sequence		54
Time-out Sequence on Power-up		59
TO		
POR bit	22,	54
Port RB Interrupt		63
PORTA		
PORTA Register		
DODIA Degister 1/		
	ł, 15,	25
PORTB	57,	58
PORTB	57, 1, 15,	58 27
PORTB	57, 1, 15,	58 27 66
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15,	58 27 66 35 85 7
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23
PORTB	57, 1, 15, 	58 27 66 35 85 7 23 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11
PORTB	57, 4, 15,	58 27 66 35 85 7 23 11 11 11 67
PORTB	57, I, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 67 18
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 1, 15,	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB	57, 15, 15,	58 27 66 35 85 .7 23 11 11 11 11 67 18 18 18 18 23
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 7 23 11 11 11 11 11 67 18 18 18 18 23 53 48
PORTB		58 27 66 35 85 .7 23 11 11 11 11 11 11 67 18 18 18 23 53 48 19
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 11 67 18 18 18 18 23 53 48 19 63
PORTB	57, 15, 4, 15, 	58 27 66 35 85 7 23 11 11 11 167 188 18 18 23 53 48 19 63 18
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 1, 15, 47, 47, 	58 27 66 35 87 7 23 11 11 11 11 11 11 11 11 11 11 11 11 11
PORTB	57, 15, 4, 15, 47, 47, 51,	58 27 66 35 87 2 11 11 11 11 11 11 11 11 11 11 11 11 1
PORTB	57, 15, 4, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30
PORTB	57, 15, 4, 15, 47, 47, 51,	58 27 66 3857 23 111 111 67 188 182 348 196 318 54 30

DIO100711	10
PIC16C711	
PIC16C715	13
Reset Conditions	56
Summary	
Reset	47, 52
Reset Conditions for Special Registers .	
RP0 bit	12, 17
RP1 bit	17

S

SEEVAL [®] Evaluation and Programming System	87			
Services				
One-Time-Programmable (OTP) Devices				
Quick-Turnaround-Production (QTP) Devices				
Serialized Quick-Turnaround Production (SQTF				
Devices				
SLEEP				
Software Simulator (MPLAB™ SIM)				
Special Features of the CPU	47			
Special Function Registers				
PIC16C71	14			
PIC16C710	14			
PIC16C711	14			
Special Function Registers, Section	14			
Stack				
Overflows				
Underflow				
STATUS Register				
Т				
T0CS bit	18			
TOLE bit				
TOIF bit				
TAD	41			
Timer0				
RTCC	57, 58			
Timers				
Timer0				
Block Diagram	31			
External Clock	33			
External Clock Timing	33			
Increment Delay				
Interrupt				
Interrupt Timing				
Prescaler				
Prescaler Block Diagram				
Section				
Switching Prescaler Assignment				
Synchronization				
T0IF				
Timing				
TMR0 Interrupt	63			
Timing Diagrams				
A/D Conversion 100,	124, 146			
Brown-out Reset	53, 97			
CLKOUT and I/O	119, 142			
External Clock Timing	118, 141			
Power-up Timer				
Reset				
Start-up Timer	,			
Time-out Sequence				
Timer0	121, 144			
Timer0 Interrupt Timing				
Timer0 with External Clock				
Wake-up from SLEEP through Interrupt				
Watchdog Timer	. 97, 143			

Maps