

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c71-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Memory Organization

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow \text{Bank } 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP

File	.e		File
004	IND=(1)	илос(1)	
00n			- 80n
010		OPTION	- 0111 - 02h
020		PUL	- 0211 - 02h
031		STATUS ESD	- 0311 - 046
0411 05b			- 0411 - 056
051			0011
076	PURID		- 0011 - 976
0711			
001			001
0911			0911
	INTCON		
0Ch		General	
	General	Purpose	
	Purpose	Register	
	Register	Mapped	
		In Bank 0.00	
2Fh			AFh
30h			B0h
(\		
			\checkmark
7Fh			FFh
	Bank 0	Bank 1	_
	Banko	Bank	
	Unimplemented	data memory locat	tions read
	as '0'.		
Note 1:	Not a physical re	gister.	
2:	The PCON regist	ter is not implemer	nted on the
3:	These locations a	are unimplemented	d in Bank 1.
5.	Any access to the	ese locations will a	access the
	corresponding Ba	ank 0 register.	

4.2.2.2 OPTION REGISTER

Applicable Devices 710 71 711 715

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1 F	R/W-1 R/W-1	R/W-1	R/W-1	R/W-1	
RBPU bit7	INTEDG	TOCS	TOSE PSA	PS2	PS1	PS0 bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	RBPU: PO 1 = PORTE 0 = PORTE	RTB Pull-up 3 pull-ups ai 3 pull-ups ai	o Enable bit re disabled re enabled by inc	lividual port	latch value	es	
bit 6:	INTEDG: In 1 = Interrup 0 = Interrup	nterrupt Edg ot on rising ot on falling	ge Select bit edge of RB0/INT edge of RB0/INT	[∙] pin Γpin			
bit 5:	TOCS: TMF 1 = Transiti 0 = Interna	R0 Clock Sc on on RA4/ I instruction	ource Select bit T0CKI pin cycle clock (CLł	(OUT)			
bit 4:	TOSE: TMF 1 = Increm 0 = Increm	R0 Source E ent on high- ent on low-t	Edge Select bit to-low transition o-high transition	on RA4/T0 on RA4/T0	CKI pin CKI pin		
bit 3:	PSA: Prese 1 = Presca 0 = Presca	caler Assigr ler is assigr ler is assigr	nment bit ned to the WDT ned to the Timer() module			
bit 2-0:	PS2:PS0:	Prescaler R	ate Select bits				
	Bit Value	TMR0 Rate	WDT Rate				
	000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128				

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS1	ADCS0	(1)	CHS1	CHS0	GO/DONE	ADIF	ADON	R = Readable bit
bit7	1						bit0	W = Writable bit U = Unimplemented bit. read as '0'
								- n =Value at POR reset
bit 7-6:	ADCS1:A	DCS0: A/D	Conversi	on Clock S	Select bits			
	00 = FOS	C/2						
	10 = FOS	c/32						
	11 = FRC	(clock deriv	ed from a	n RC oscil	lation)			
bit 5:	Unimple	mented: Re	ad as '0'.					
bit 4-3:	: 4-3: CHS1:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3)							
bit 2:	GO/DON	E: A/D Con	version Sta	atus bit				
	$\frac{\text{If ADON}}{1 = A/D c}$ $0 = A/D c$ sion is co	<u>= 1</u> : onversion ir onversion n mplete)	n progress lot in prog	(setting th ress (This	his bit starts th bit is automat	ie A/D con ically cleai	version) ed by hardw	are when the A/D conver-
bit 1:	ADIF: A/E 1 = conve 0 = conve	D Conversio ersion is con ersion is not	n Comple nplete (mu complete	te Interrup ist be clea	t Flag bit red in softwar	e)		
bit 0:	ADON: A	/D On bit						
	1 = A/D c 0 = A/D c	onverter mo onverter mo	odule is op odule is sh	erating utoff and o	consumes no	operating	current	
Note 1:	Bit5 of Al	DCON0 is a nented, read	l General I d as '0'.	Purpose R	R/W bit for the	PIC16C71	0/711 only. F	For the PIC16C71, this bit is
	ampen	ionieu, iea						

FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:					
Mode	Freq	OSC1	OSC2		
XT	455 kHz	68 - 100 pF	68 - 100 pF		
	2.0 MHz	15 - 68 pF	15 - 68 pF		
	4.0 MHz	15 - 68 pF	15 - 68 pF		
HS	8.0 MHz	10 - 68 pF	10 - 68 pF		
	16.0 MHz	10 - 22 pF	10 - 22 pF		
The note	se values are f	f or design guida r bage.	nce only. See		
Resonato	rs Used:	5			
455 kHz	Panasonic E	FO-A455K04B	± 0.3%		
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%		
4.0 MHz	Murata Erie	CSA4.00MG	± 0.5%		
8.0 MHz	z Murata Erie CSA8.00MT ± 0.5%				
16.0 MHz	Murata Erie	CSA16.00MX	± 0.5%		
All reso	onators used did	d not have built-in	capacitors.		

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes at bottom of page.

Crystals Used					
32 kHz	Epson C-001R32.768K-A	\pm 20 PPM			
200 kHz	STD XTL 200.000KHz	\pm 20 PPM			
1 MHz	ECS ECS-10-13-1	\pm 50 PPM			
4 MHz	ECS ECS-40-20-1	\pm 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	\pm 30 PPM			
20 MHz	EPSON CA-301 20.000M-C	\pm 30 PPM			

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

INCFSZ	Increme	nt f, Skip	o if O		
Syntax:	[label]	INCFSZ	f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0	
Status Affected:	None				
Encoding:	00	1111	dfff	ffff	
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.				
Words:	1				
Cycles:	1(2)				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode Read Pregister 'f'		Process data	Write to dest	
If Skip:	(2nd Cyc	le)			
	Q1	Q2	Q3	Q4	
	NOP	NOP	NOP	NOP	
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE •				
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT \neq 0, PC = address HERE +1				

IORLW	Inclusive	e OR Lite	eral with	w		
Syntax:	[label]	IORLW	k			
Operands:	$0 \le k \le 2$	55				
Operation:	(W) .OR.	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z					
Encoding:	11	1000	kkkk	kkkk		
Description:	The conte OR'ed wit result is pl	nts of the h the eigh aced in th	W register t bit literal ne W regist	r is 'k'. The ter.		
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read literal 'k'	Process data	Write to W		
Example	IORLW	0x35				
Example						
Example	Before In	struction	1			
Example	Before In	struction W =	0x9A			
Example	Before In After Inst	struction W = ruction	0x9A			

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	00	0000	0xx0	0000	
Description:	No operati	ion.			
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	NOP	NOP	NOP	
Example	NOP				

RETFIE	Return from Interrupt				
Syntax:	[label]	RETFIE			
Operands:	None				
Operation:	$\begin{array}{l} \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \end{array}$				
Status Affected:	None				
Encoding:	00	0000	0000	1001	
Description.	and Top of the PC. In ting Globa (INTCON- instruction	f Stack (To terrupts a I Interrupt <7>). This	OS) is load re enabled Enable bi is a two c	ded in I by set- it, GIE ycle	
Words:	1				
Cycles:	2				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack	
2nd Cycle	NOP	NOP	NOP	NOP	
Example	RETFIE				

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description: Words: Cycles: Example	The conter loaded in t instruction patibility w Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TION is a le user ca	W register DN registe rted for coo C5X produ readable/v n directly a	r are r. This de com- ucts. vritable address
	To mainta with futu not use t	ain upwa re PIC16 his instru	rd compa CXX production.	tibility ucts, do

10.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

10.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

10.8 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

10.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information

Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

10.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from PICMASTER, Microchip's Universal Emulator System.

	PIC12C5XX	PIC14000	PIC16C5X	PIC16CXXX	PIC16C6X	PIC16C7XX	PIC16C8X	PIC16C9XX	PIC17C4X	PIC17C75X	24CXX 25CXX 93CXX	HCS200 HCS300 HCS301
BICMASTER®/ PICMASTER-CE In-Circuit Emulator	2	7	2	>	7	7	>	7	2	Available 3Q97		
In-Circuit Emulator	7		7	7	7	7	7					
MPLAB™ Integrated Development Environment	7	7	7	7	7	7	7	7	7	7		
MPLAB™ C S Compiler	7	2	7	7	7	7	7	~	>	7		
fuzzyTECH [®] .MP Explorer/Edition Fuzzy Logic Dev. Tool	7	7	7	2	2	2	7	7	7			
MP-DriveWay™ Applications Code Generator			7	7	7	7	7		7			
Total Endurance™ Software Model											7	
PICSTART® Lite Ultra Low-Cost Dev. Kit			2		7	7	7					
e PICSTART® Plus Low-Cost Universal Dev. Kit	7	7	7	7	7	7	>	7	7	7		
면 PRO MATE® II Duniversal Programmer	7	7	7	7	7	7	7	7	7	7	7	7
KEELOQ [®] Programmer												7
SEEVAL [®] Designers Kit											7	
PICDEM-1			7	7			7		7			
DICDEM-2					7	7						
BICDEM-3								7				
KEELOQ [®] Evaluation Kit												7

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC16C71X

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						litions (unless otherwise stated) $^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $^{\circ}O^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)	
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	VDD	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3)	IPD	- - -	7 1.0 1.0	28 14 16	μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applica	ble Devices 710 71 711 715						
15.3	DC Characteristics: PIC16C71 PIC16C71 PIC16LC7 PIC16LC7	-04 (0 -20 (0 1-04 (0	Commerc Commerc Commerc	cial, cial, cial,	Indust Indust Indust	rial) rial) rial)	
		Standa	rd Opera	ting	Conditi	ons (u	nless otherwise stated)
		OOpera	ating temp	erat	ure 0°C	≤	$TA \leq +70^{\circ}C$ (commercial)
DC CHA	RACTERISTICS	•		× /-	-40°	C _≤	$IA \leq +85^{\circ}C$ (industrial)
		Operation operation	ng voltage	e vd	D range	as des	cribed in DC spec Section 15.1
Daram	Characteristic		Min	Tvn	Max	Unite	Conditions
No.	Gharacteristic	Sym		1 1	WIAN	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \le VDD \le 5.5V$
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports (Note 4)	Vін		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
·			· · · ·				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

FIGURE 15-6: A/D CONVERSION TIMING

TABLE 15-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 71	2.0	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 71	2.0	_		μs	TOSC based, VREF full range
			PIC16 C 71	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16 LC 71	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time)	(Note 1)	_	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20		μs	
				5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2§	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert -	\rightarrow sample time	1.5§	—		TAD	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ These specifications ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

PIC16C71X

TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cart	Devt	Average			
Cext	Rext	Fosc @	5V, 25°C		
20 pF	4.7k	4.52 MHz	±17.35%		
	10k	2.47 MHz	±10.10%		
	100k	290.86 kHz	±11.90%		
100 pF	3.3k	1.92 MHz	±9.43%		
	4.7k	1.49 MHz	±9.83%		
	10k	788.77 kHz	±10.92%		
	100k	88.11 kHz	±16.03%		
300 pF	3.3k	726.89 kHz	±10.97%		
	4.7k	573.95 kHz	±10.14%		
	10k	307.31 kHz	±10.43%		
	100k	33.82 kHz	±11.24%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

		Package	Group: Plastic S	SOIC (SO)		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Мах	Notes
α	0°	8°		0°	8°	
A	2.362	2.642		0.093	0.104	
A1	0.101	0.300		0.004	0.012	
В	0.355	0.483		0.014	0.019	
С	0.241	0.318		0.009	0.013	
D	11.353	11.735		0.447	0.462	
E	7.416	7.595		0.292	0.299	
е	1.270	1.270	Reference	0.050	0.050	Reference
Н	10.007	10.643		0.394	0.419	
h	0.381	0.762		0.015	0.030	
L	0.406	1.143		0.016	0.045	
N	18	18		18	18	
CP	_	0.102		_	0.004	

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	

W

W Register	
ALU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	
Programming Considerations .	65
Timeout	
WDT Period	
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow 10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB27
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	13
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	22
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	24
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	28
Figure 5-6:	Successive I/O Operation	30
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	32
Figure 6-4:	Timer0 Interrupt Timing	32
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.