

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c71-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C71X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C710/71** devices have 36 bytes of RAM, the **PIC16C711** has 68 bytes of RAM and the **PIC16C715** has 128 bytes of RAM. Each device has 13 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc.

The PIC16C71X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C71X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C71X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications).

1.1 Family and Upward Compatibility

Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B).

1.2 <u>Development Support</u>

PIC16C71X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 10.0 for more details about Microchip's development tools.

NOTES:

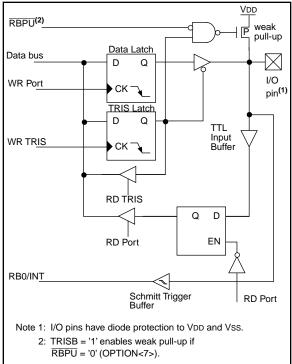
Pin Name	DIP Pin#	SSOP Pin# ⁽⁴⁾	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	16	18	16	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	17	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	4	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	17	19	17	I/O	TTL	RA0 can also be analog input0
RA1/AN1	18	20	18	I/O	TTL	RA1 can also be analog input1
RA2/AN2	1	1	1	I/O	TTL	RA2 can also be analog input2
RA3/AN3/VREF	2	2	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage
RA4/T0CKI	3	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
						PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	7	6	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	7	8	7	I/O	TTL	
RB2	8	9	8	I/O	TTL	
RB3	9	10	9	I/O	TTL	
RB4	10	11	10	I/O	TTL	Interrupt on change pin.
RB5	11	12	11	I/O	TTL	Interrupt on change pin.
RB6	12	13	12	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	13	14	13	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Vss	5	4, 6	5	Р	—	Ground reference for logic and I/O pins.
Vdd	14	15, 16	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = inp		O = outp — = Not			/O = input/out TTL = TTL inp	I I

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
4: The PIC16C71 is not available in SSOP package.

5.2 PORTB and TRISB Registers


PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS, RPC	;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS, RPC	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

7.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF

Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the trade-off of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows:

Conversion time = $2TAD + N \cdot TAD + (8 - N)(2TOSC)$ Where: N = number of bits of resolution required. Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 7-3 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32TOSC), and assumes that immediately after 6TAD, the A/D clock is programmed for 2TOSC.

The 2Tosc violates the minimum TAD time since the last 4-bits will not be converted to correct values.

EXAMPLE 7-3:	4-BIT vs. 8-BIT CONVERSION TIMES
\mathbf{L}	

	- (1)	Resolution			
	Freq. (MHz) ⁽¹⁾	4-bit	8-bit		
TAD	20	1.6 μs	1.6 μs		
	16	2.0 μs	2.0 μs		
Tosc	20	50 ns	50 ns		
	16	62.5 ns	62.5 ns		
2TAD + N • TAD + (8 - N)(2TOSC)	20	10 μs	16 μs		
	16	12.5 μs	20 µs		

Note 1: The PIC16C71 has a minimum TAD time of 2.0 µs.

All other PIC16C71X devices have a minimum TAD time of 1.6 μ s.

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

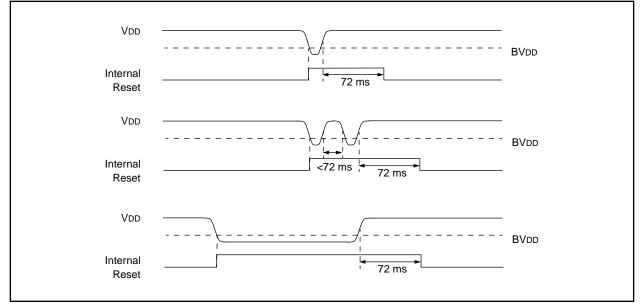
8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

~								
Note: For the PIC16C71 If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events the would cause this to occur are:								
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.						
	2	. The program branches to the Interrupt vector and executes the Interrupt Service Routine.						
	3	. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.						
		Perform the following to ensure that inter- upts are globally disabled:						
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit						
		INTCON, GIE ; Global interrupt ; disabled?						
	GOTO	LOOP ; NO, try again						

:

Yes, continue

with program

flow

TABLE 9-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description		14-Bit Opcode				Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIEI		FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AN		NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
OUDLIN									

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C71X

CLRF	Clear f						
Syntax:	[<i>label</i>] CLRF f						
Operands:	$0 \le f \le 127$						
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	G_REG				
	Before Instruction FLAG_REG = 0x5A After Instruction						
	$FLAG_REG = 0x00$ $Z = 1$						

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleare	d. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	Process data	Write to W
Example	CLRW			
	Before In	struction	1	
		W =	0x5A	
	After Inst			
		W = Z =	0x00 1	
		-	•	
CLRWDT	Clear Wa	tchdog	Timer	
Syntax:	[label]	CLRWD	Т	
Operands:	None			
Operation:	$00h \rightarrow W$			
	$0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}$	r presca	ler,	
	$1 \rightarrow \overline{PD}$			
Status Affected:	TO, PD			
Status Affected: Encoding:	TO , PD	0000	0110	0100
Encoding:	00 CLRWDT in	struction	resets the	Watch-
	00	struction It also re	resets the sets the pi	Watch- rescaler
Encoding:	00 CLRWDT in dog Timer of the WD	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description:	00 CLRWDT in dog Timer of the WD are set.	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description: Words:	00 CLRWDT in dog Timer of the WD are set. 1	struction It also re	resets the sets the pi	Watch- rescaler
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer of the WD are set. 1 1	Instruction It also re T. Status I	resets the set <u>s</u> the pr bits TO and	Watch- re <u>sca</u> ler d PD
Encoding: Description: Words: Cycles:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1	Istruction It also re T. Status I	resets the sets the pl pits TO and Q3 Process	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 Q1 Decode	Q2	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer of the WD are set. 1 1 2 4 2 1 2 2 2 2 CLRWDT Before In	Q2 NOP Struction WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2	Q2 NOP Struction WDT cou	Q3 Process data	Watch- re <u>sc</u> aler d PD Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	Q2 NOP Struction WDT cou WDT cou WDT pres	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00 0
Encoding: Description: Words: Cycles: Q Cycle Activity:	00 CLRWDT in dog Timer, of the WD are set. 1 1 2 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter ? 0x00

NOP	No Operation									
Syntax:	[label]	[label] NOP								
Operands:	None									
Operation:	No operation									
Status Affected:	None									
Encoding:	00	0000	0xx0	0000						
Description:	No operation.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	NOP	NOP	NOP						
Example	NOP									

RETFIE	Return fi	rom Inte	rrupt				
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,					
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Monda	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Opt	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W)\toOF$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description:	The conter loaded in the instruction patibility with Since OPT register, the it.	he OPTIC is suppoi ith PIC16 ION is a	DN registe rted for co C5X produ readable/v	r. This de com- ucts. vritable
Words:	1			
Cycles:	1			
Example				
	To mainta with futur not use th	re PIC16	CXX prod	

RETLW Return with Literal in W									
Syntax:	[label]	RETLW	k						
Operands:	$0 \le k \le 2$	55							
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow F \end{array}$	ъс							
Status Affected:	None								
Encoding:	11	01xx	kkkk	kkkk					
Description:	The W reg bit literal 'k loaded fro return add instruction	t'. The pro m the top ress). Thi	gram cour of the stac	nter is ck (the					
Words:	1								
Cycles:	2								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
1st Cycle	Decode	Read literal 'k'	NOP	Write to W, Pop from the Stack					
2nd Cycle	NOP	NOP	NOP	NOP					
Example	CALL TABLI	;offse	tains tab t value ow has tab						
TABLE ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;									
	RETLW kn Before In	; End o struction							
		W =	0x07						
	After Inst	ruction W =	value of k	8					

Syntax:	[label]	RETUR	N				
Operands:	None						
Operation:	$TOS \to F$	ъС					
Status Affected:	None						
Encoding:	00	0000	0000	1000			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	NOP	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETURN	rrupt					
		PC =	TOS				

HCS200 HCS300 HCS301										>	7					7
										-	-					-
24CXX 25CXX 93CXX							7			7		7				
PIC17C75X	Available 3Q97		7	7					7	7						
PIC17C4X	>		2	2	7	7			7	7			7			
PIC16C9XX	2		2	2	7				7	7					٢	
PIC16C8X	2	7	7	7	7	7		7	7	2			7			
PIC16C7XX	7	7	7	7	7	7		7	7	7				7		
PIC16C6X	7	7	7	7	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	2	7	7	7	7	7		7	7	7			7			
PIC14000	7		7	7	7				7	7						
PIC12C5XX	>	7	>	2	7				7	7						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	CEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C Compiler	10 fuzzyTECH [®] -MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE [®] II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2	BICDEM-3	KEELOQ [®] Evaluation Kit

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC16C71X

Applica	ble Devices 710 71 711 715						
11.3		1-04 0-10 1-10 0-20 1-20 '10-04	(Comme (Comme (Comme (Comme (Comme (Comme	ercia ercia ercia ercia ercia ercia	II, Indus II, Indus II, Indus II, Indus II, Indus II, Indus	trial, E trial, E trial, E trial, E trial, E trial, E	Extended) Extended) Extended) Extended)
							less otherwise stated)
		Operati	ng tempe	ratur			$A \le +70^{\circ}C$ (commercial)
DC CHA	RACTERISTICS				-40°C -40°C		A ≤ +85°C (industrial) A ≤ +125°C (extended)
		Operati	na voltaa	e Vdi			ribed in DC spec Section 11.1 and
		Section			J		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				1			
	Input Low Voltage						
	I/O ports	Vi∟					
D030	with TTL buffer		Vss	-	0.15VDD		For entire VDD range
D030A			Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
0033	Input High Voltage		V 35	-	0.3700	V	
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$
D040A			0.25VDD	-	VDD	V	For entire VDD range
-			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd	V	For entire VDD range
D042	MCLR, RB0/INT		0.8Vdd	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
D060	Input Leakage Current (Notes 2, 3) I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$V_{SS} \leq V_{PIN} \leq V_{DD}$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LF osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 710 71 711 715

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

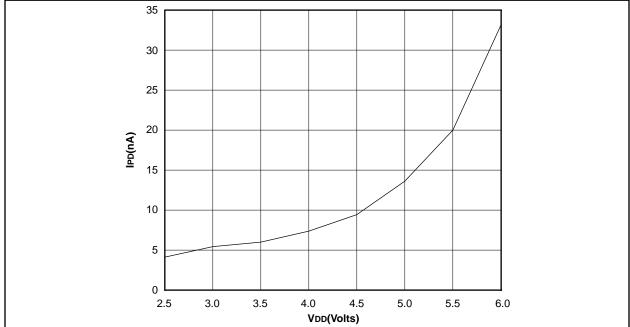
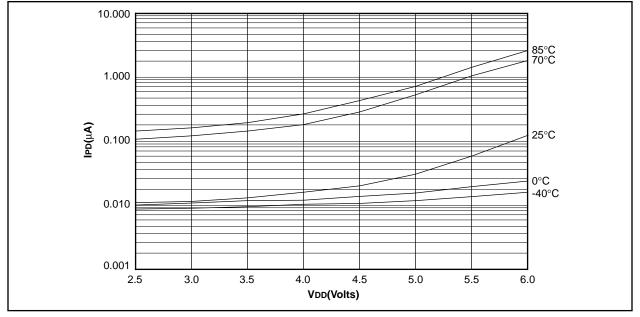
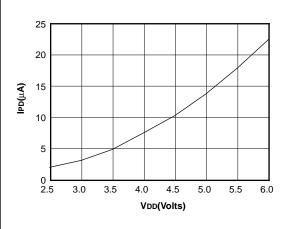
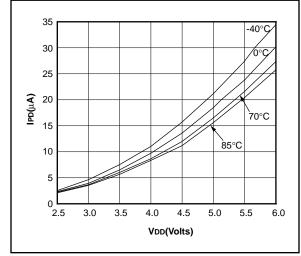
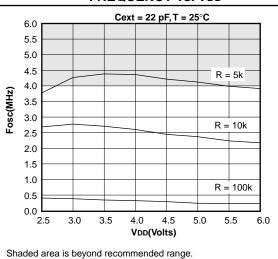
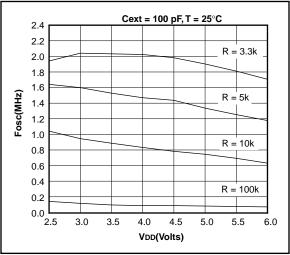




FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)



Applicable Devices 710 71 711 715





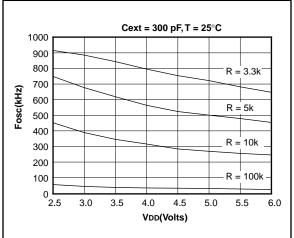
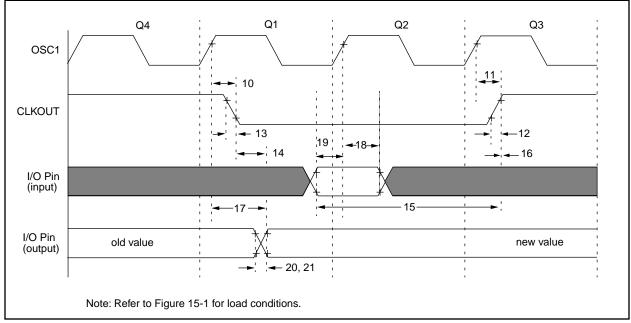

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applica	ble Devices 710 71 711 715						
15.3 [DC Characteristics: PIC16C71 PIC16C71 PIC16C71 PIC16LC7	-20 (0 1-04 (0	Commero Commero	cial, cial,	Indust Indust	rial) rial)	
							nless otherwise stated)
		OOpera	ating temp	erat			$TA \leq +70^{\circ}C$ (commercial)
DC CHAP	RACTERISTICS	Oporati			-40°(-	TA \leq +85°C (industrial) cribed in DC spec Section 15.1
			ction 15.2		Diange	as uesi	chibed in DC spec Section 15.1
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				t			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports (Note 4)	Vih		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
+ [Data in "Typ" column is at 5V, 25°C unl	ooo oth	nuico oto	tod	Those n	oromo	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

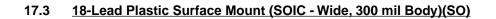
3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---


Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	d	—	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	0.25Tcy + 25	—		ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—		ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 71	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	-	ns	
20*	TioR	Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	20	—	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

	Package Group: Plastic SOIC (SO)										
		Millimeters									
Symbol	Min	Max	Notes	Min	Мах	Notes					
α	0°	8°		0°	8 °						
А	2.362	2.642		0.093	0.104						
A1	0.101	0.300		0.004	0.012						
В	0.355	0.483		0.014	0.019						
С	0.241	0.318		0.009	0.013						
D	11.353	11.735		0.447	0.462						
E	7.416	7.595		0.292	0.299						
е	1.270	1.270	Reference	0.050	0.050	Reference					
Н	10.007	10.643		0.394	0.419						
h	0.381	0.762		0.015	0.030						
L	0.406	1.143		0.016	0.045						
N	18	18		18	18						
CP	_	0.102		_	0.004						

I

I/O Ports	
PORTA	
PORTB	
Section	
I/O Programming Considerations	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
In-Circuit Serial Programming47, 0	67
INDF Register	
Indirect Addressing	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Format	69
Instruction Set	
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	12
BTFSC	
BTFSS	
CALL	13
CLRF	
CLRWDT	
COMF	
DECF	
DECFSZ	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	78
NOP	79
OPTION	79
RETFIE	
RETLW	80
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	
TRIS	
XORLW	
XORWF	
Section	
Summary Table	
INTCON Register	
INTE bit	
INTEDG bit	
Internal Sampling Switch (Rss) Impedence	
Interrupts	
A/D	
External	
PORTB Change	
PortB Change	
RB7:RB4 Port Change	
Section	61
TMR0	63

TMR0 Overflow	61
INTF bit	
IRP bit	17
К	
KeeLoq [®] Evaluation and Programming Tools	87
L	
Loading of PC	23
LP	
Μ	
MCLR	52, 56
Memory	
Data Memory	
Program Memory	11
Register File Maps	
PIC16C71	12
PIC16C710	12
PIC16C711	13
PIC16C715	13
MP-DriveWay™ - Application Code Generator	87
MPEEN bit	22, 48
MPLAB™ C	87
MPLAB [™] Integrated Development Environment	
Software	86

0

OPCODE	69
OPTION Register	
Orthogonal	7
OSC selection	47
Oscillator	
HS	49, 54
LP	49, 54
RC	49
XT	49, 54
Oscillator Configurations	49
Oscillator Start-up Timer (OST)	53

Ρ

Packaging	
18-Lead CERDIP w/Window	155
18-Lead PDIP	156
18-Lead SOIC	157
20-Lead SSOP	158
Paging, Program Memory	23
PCL Register 14, 15,	16, 23
PCLATH	57, 58
PCLATH Register 14, 15,	16, 23
PCON Register	22, 54
PD bit	52, 55
PER bit	
PIC16C71	147
AC Characteristics	147
PICDEM-1 Low-Cost PIC16/17 Demo Board	86
PICDEM-2 Low-Cost PIC16CXX Demo Board	86
PICDEM-3 Low-Cost PIC16CXXX Demo Board	
PICMASTER [®] In-Circuit Emulator	85
PICSTART [®] Plus Entry Level Development System	85
PIE1 Register	20
Pin Functions	
MCLR/VPP	9
OSC1/CLKIN	9
OSC2/CLKOUT	
RA0/AN0	9
RA1/AN1	9

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe $^{\circledast}$ communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

970301

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.