

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c710-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C71X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C71X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**71. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C71X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 1		•								-	
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	Program Counter's (PC) Least Significant Byte								0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	-	-	PORTA Dat	a Direction F	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	—	Unimpleme	nted							—	—
88h	_	Unimpleme	nted							—	_
89h	—	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	_	—	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh (1)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE	—	—	—	—	—	—	-0	-0
8Dh	—	Unimpleme	nted							—	_
8Eh	PCON	MPEEN	—	—	—	—	PER	POR	BOR	u1qq	u1uu
8Fh	_	Unimpleme	nted							-	—
90h	_	Unimpleme	nted							_	—
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							-	—
93h	—	Unimpleme	nted							-	—
94h	_	Unimpleme	nted							_	—
95h		Unimpleme	nted								
96h		Unimpleme	nted								_
97h		Unimpleme	nted								
98h		Unimpleme	nted								
99h		Unimpleme	nted								_
9Ah		Unimpleme	nted								
9Bh	_	Unimpleme	nted							_	—
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted								_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	—	_	—	—	—	-	PCFG1	PCFG0	00	00

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function			
RA0/AN0	bit0	TTL	Input/output or analog input			
RA1/AN1	bit1	TTL	nput/output or analog input			
RA2/AN2	bit2	TTL	Input/output or analog input			
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF			
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0			
			Output is open drain type			

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	_	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	—	—	_	PORTA D	PORTA Data Direction Register					1 1111
9Fh	ADCON1	_	_	_	_	_		PCFG1	PCFG0	00	00

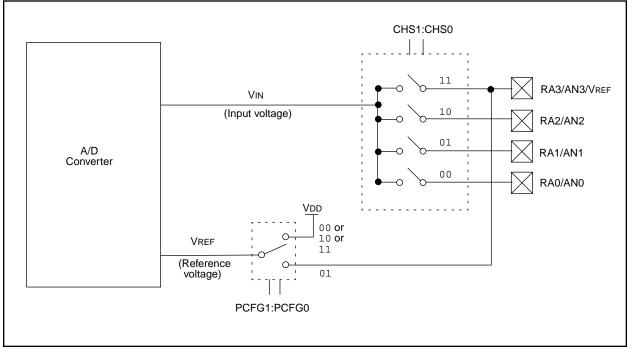
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.

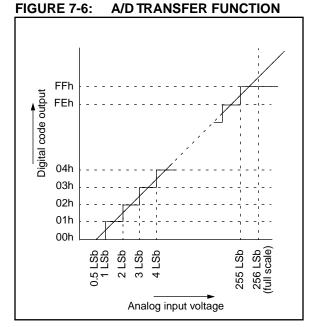

2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.


FIGURE 7-4: A/D BLOCK DIAGRAM

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

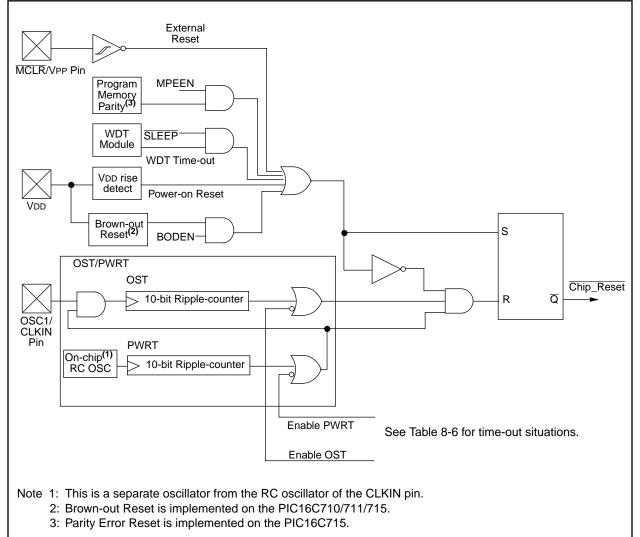
FIGURE 7-7: FLOWCHART OF A/D OPERATION

8.3 <u>Reset</u>

Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)


Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1(2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_ _u _(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	वेर्वेवे	luu	luu
ADCON1	00	00	

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

10.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

10.12 <u>C Compiler (MPLAB-C)</u>

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

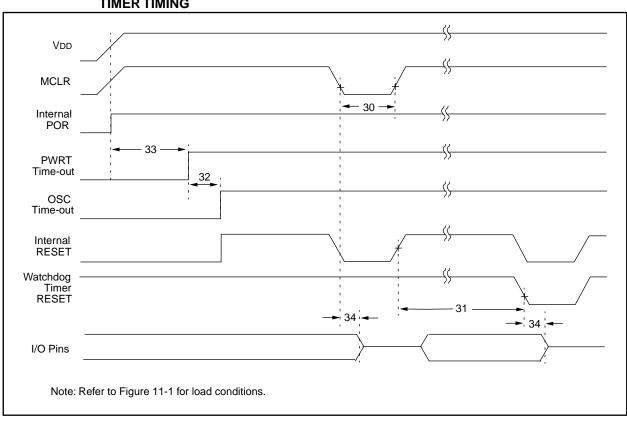
10.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

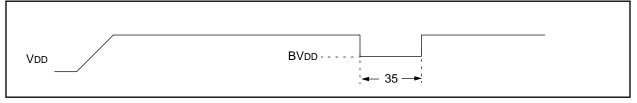
10.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.


10.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

10.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

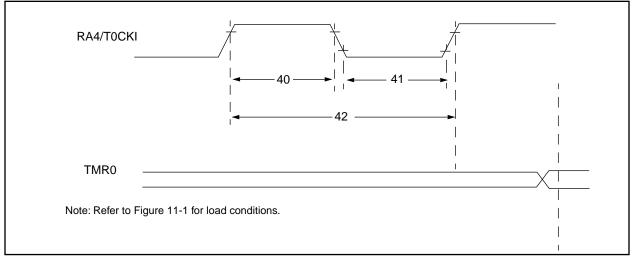

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

Applicable Devices 710 71 711 715

FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 11-5: BROWN-OUT RESET TIMING

TABLE 11-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1	_	_	μs	VDD = 5V, -40°C to +125°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	-	Tosc = OSC1 period
33	Tpwrt	Power up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	1.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$3.8V \leq V\text{DD} \leq 4.2V$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

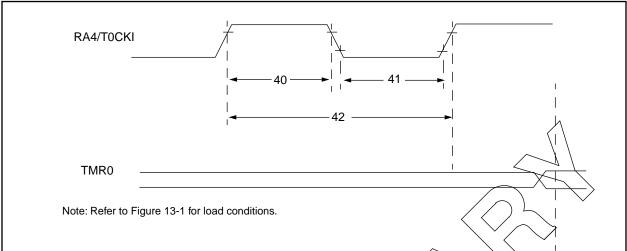
Param No.	Sym	Characteristic	aracteristic		Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	CKI High Pulse Width No Prescaler		—		ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
41	Tt0L	T0CKI Low Pulse Width	Low Pulse Width No Prescaler		—	_	ns	Must also meet
			With Prescaler	10*	—	-	ns	parameter 42
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edg	e to timer increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

OSC		PIC16C715-04	,	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	/.	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	ot use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do no	ot use in LP mode	// /	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.


TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

PIC16C71X

Applicable Devices 710 71 711 715

TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Турт	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY+20*		_	ns	
			With Prescaler	10*	1 –	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	-	_	ns	
			With Prescaler	10*	-	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N		_		N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge t	d timer increment	2Tosc	-	7Tosc	_	

- * These parameters are characterized but not tested. \checkmark
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C71X

Applicable Devices 710 71 711 715

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71

Absolute Maximum Ratings †

•	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioκ (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum {(VD + \sum IOH} + \sum	O-VOH) x IOH} + Σ (VOI x IOL)
Note 2: Voltage spikes below Vss at the \overline{MCLP} pip, inducing currents greater than 80 m	A may cause latch-up. Thus

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C71-04	PIC16C71-20	PIC16LC71-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq:4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 μA max. at 4V Freq: 4 MHz max.
нѕ	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 15 μA typ. at 32 kHz, 4.0V IPD: 0.6 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 32 μA max. at 32 kHz, 3.0V IPD: 9 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)				
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)	
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V	
D020 D021 D021A	Power-down Current (Note 3)	IPD		7 1.0 1.0	28 14 16	μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C VDD = 4.0V, WDT disabled, -40° C to $+85^{\circ}$ C	

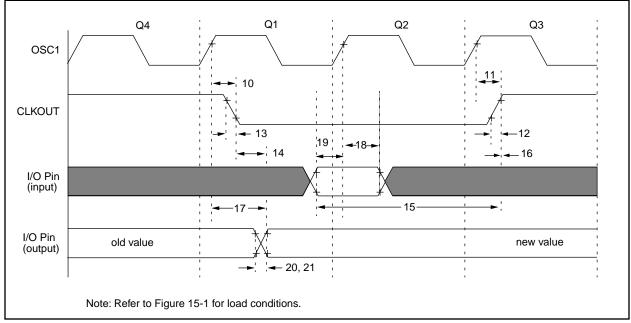
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

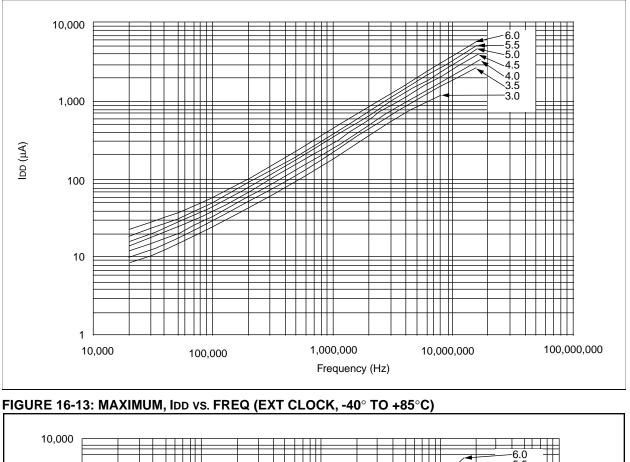
Applicable Devices 710 71 711 715

FIGURE 15-3: CLKOUT AND I/O TIMING

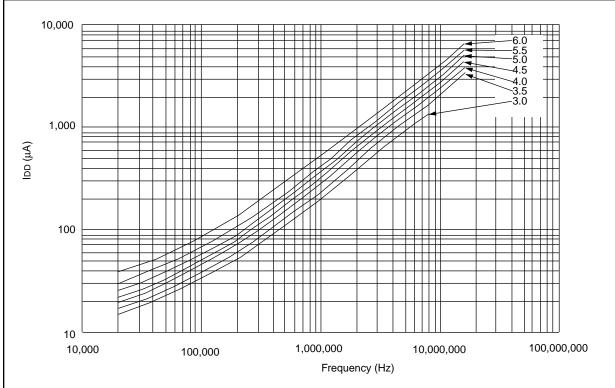
TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	—		ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		-	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	PIC16 C 71	100	—		ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	—	-	ns	
20*	TioR	Port output rise time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high or low time		20	—	_	ns	

* These parameters are characterized but not tested.

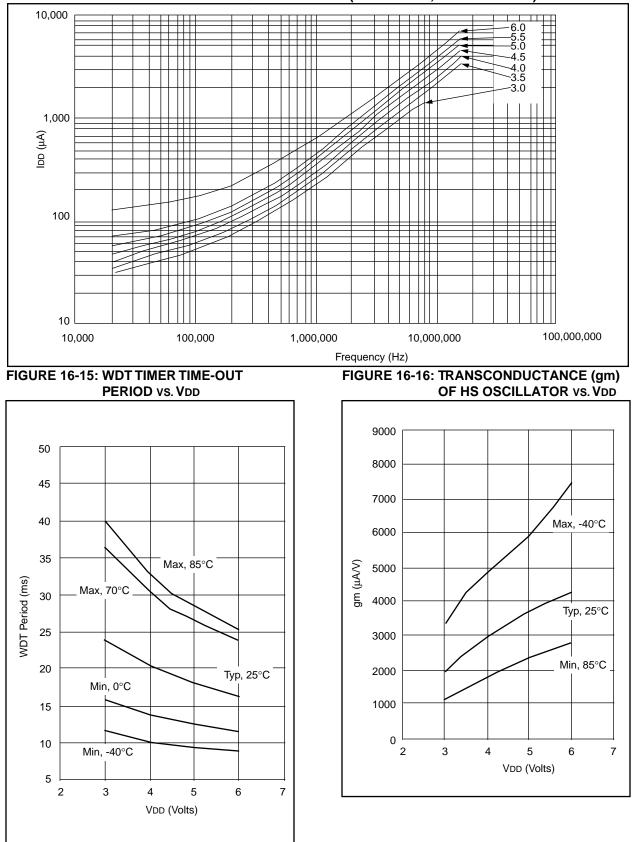

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.


Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C71X

Applicable Devices 710 71 711 715


FIGURE 16-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

Data based on matrix samples. See first page of this section for details.

Applicable Devices 710 71 711 715

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

PIC16C71X

Figure 14-6:	Typical RC Oscillator Frequency vs.
riguio i i o.	VDD126
Figure 14-7:	Typical RC Oscillator Frequency vs. VDD126
Figure 14-8:	Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode)127
Figure 14-9:	Maximum IPD vs. VDD Brown-out Detect Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 14-12:	85°C to -40°C, RC Mode)
Figure 14-13:	(RC Mode @ 22 pF, 25 C) 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) 128
Figure 14-14:	(RC Mode @ 22 pF, -40 C to 85 C) 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C)
Figure 14-15:	Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 14-17:	Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) 130
Figure 14-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of XT Oscillator vs. VDD131
Figure 14-22:	Typical XTAL Startup Time vs. VDD (LP Mode, 25°C)132
Figure 14-23:	Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)132
Figure 14-24:	Typical XTAL Startup Time vs. VDD (XT Mode, 25°C)132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)
Figure 14-27:	Typical IDD vs. Frequency (XT Mode, 25°C)133
Figure 14-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)134
Figure 15-1:	Load Conditions140
Figure 15-2:	External Clock Timing141
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Figure 45 5	Timing
Figure 15-5:	Timer0 External Clock Timings
Figure 15-6:	A/D Conversion Timing146
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature
Figure 16-3:	VDD147 Typical RC Oscillator Frequency vs.
	VDD147

Figure 16-4:	Typical RC Oscillator Frequency vs. VDD
Figure 16-5:	Typical lpd vs. VDD Watchdog Timer Disabled 25°C148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C 148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog Disabled149
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled149
Figure 16-9:	Vth (Input Threshold Voltage) of I/O Pins vs. VDD149
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage) of OSC1 Input (in XT, HS, and
	LP Modes) vs. VDD 150
Figure 16-12:	Typical IDD vs. Freq (Ext Clock, 25°C) 151
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C)151
Figure 16-14:	Maximum IDD vs. Freq with A/D Off
	(Ext Clock, -55° to +125°C) 152
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
E: 10.17	HS Oscillator vs. VDD 152
Figure 16-17:	Transconductance (gm) of LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
. igure te tet	XT Oscillator vs. VDD 153
Figure 16-19:	IOH vs. VOH, VDD = 3V 153
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154