

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c710-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device.

Device	Program Memory	Data Memory
PIC16C710	512 x 14	36 x 8
PIC16C71	1K x 14	36 x 8
PIC16C711	1K x 14	68 x 8
PIC16C715	2K x 14	128 x 8

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (1)
Bank 0	Bank 0										
00h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	—	_	—	PORTA Dat	a Latch whe	n written: PO	RTA pins wh	en read	x 0000	u 0000
06h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wh	nen read				XXXX XXXX	uuuu uuuu
07h	—	Unimpleme	nted				1			_	—
08h	ADCON0	ADCS1	ADCS0	(6)	CHS1	CHS0	GO/DONE	ADIF	ADON	00-0 0000	00-0 0000
09h ⁽³⁾	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
0Ah ^(2,3)	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
83h ⁽³⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointe	er		•	•	•	xxxx xxxx	uuuu uuuu
85h	TRISA	—	_	_	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	a Direction C	Control Regis	ster					1111 1111	1111 1111
87h ⁽⁴⁾	PCON	_	_					POR	BOR	dd	uu
88h	ADCON1	_	—	—	_	—	—	PCFG1	PCFG0	00	00
89h ⁽³⁾	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
8Ah (2,3)	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽³⁾	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u

TABLE 4-1: PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: These registers can be addressed from either bank.

4: The PCON register is not physically implemented in the PIC16C71, read as '0'.

5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.

6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.

PIC16C71X

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

	BSF	STATUS,	RP0	;	Select	Banł	c 1					
	CLRF	ADCON1		;	Config	ure A	A/D i	nputs				
	BCF	STATUS,	RP0	;	Select	Banł	c 0					
	MOVLW	0xC1		;	RC Clo	ck, A	A/D i	s on, Cha	annel (0 is sel	ected	d
	MOVWF	ADCON0		;								
	BSF	INTCON,	ADIE	;	Enable	A/D	Inte	errupt				
	BSF	INTCON,	GIE	;	Enable	all	inte	errupts				
En	sure tha	at the re	equired	samplin	g time	for	the	selected	input	channel	has	elapsed.

Then the conversion may be started.

;

;;

;

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion.

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

8.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST), and Brown-out Reset</u> (BOR)

8.4.1 POWER-ON RESET (POR)

Applicable Devices 710 71 711 715

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

8.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

8.4.3 OSCILLATOR START-UP TIMER (OST)

Applicable Devices 710 71 711 715

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

8.4.4 BROWN-OUT RESET (BOR)

Applicable Devices 710 71 711 715

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations.

FIGURE 8-10: BROWN-OUT SITUATIONS

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	นนนน นนนน	นนนน นนนน
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	นนนน นนนน	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	xxxx xxxx	นนนน นนนน	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	-0	-0	_u(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	qqq	luu	luu
ADCON1	00	00	uu

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 9-2 lists the instructions recognized by the MPASM assembler.

Figure 9-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

PIC16C71X

Appli	cable Devices	710 71	711 715
11.1	DC Character	ristics:	PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended)
			PIC16C711-20 (Commercial, Industrial, Extended)

DC CHA	RACTERISTICS		Stand Opera	lard O ating te	p erati mpera	n g Con ture (-	ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $\cdot40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $\cdot40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3)		-	1.5	21	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A D021B			-	1.5	30	μΑ μΑ	$VDD = 4.0V$, VDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ΔIBOR	-	300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2				
LP	32 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
XT	200 kHz	47-68 pF	47-68 pF				
	1 MHz	15 pF	15 pF				
	4 MHz	15 pF	15 pF				
HS	4 MHz	15 pF	15 pF				
	8 MHz	15-33 pF	15-33 pF				
	20 MHz	15-33 pF	15-33 pF				
		•					
Crystals Used							
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM				
200 kHz	STD XTL 2	00.000KHz	± 20 PPM				
1 MHz	ECS ECS-	ECS ECS-10-13-1					
4 MHz	ECS ECS-4	40-20-1	± 50 PPM				
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM				

Applicable Devices 710 71 711 715

FIGURE 12-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

FIGURE 12-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

Applicable Devices71071711715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	ACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions		
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μÀ	BOR enabled VDD = 5.0V		
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	35 5	μ Α μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$		
D023	Brown-out Reset Current (Note 5)		- `	300*	500	μA	BOR enabled VDD = 5.0V		

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)OOperating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)Operating voltage VDD range as described in DC spec Section 15.1and Section 15.2.						
Param	Characteristic	Sym	Min	Typ +	Мах	Units	Conditions		
NO.	Conscitive Londing Space on								
	Output Pins								
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Сю			50	pF			
+ [Data in "Typ" column is at 5V, 25°C unl	ess othe	erwise sta	ited.	These p	barame	ters are for design guidance only		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 3: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

Applicable Devices 710 71 711 715

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 10 0. CERCOT AND 10 THINKS REGOLIERIENTS
--

Parameter	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
NO.								
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	JT ↑	0.25Tcy + 25	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	↑	0	_	—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 71	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 71		10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71		_	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	_	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C71X

TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cart	Devt	Average		
Cext	Rext	Fosc @ 5V, 25°C		
20 pF	4.7k	4.52 MHz	±17.35%	
	10k	2.47 MHz	±10.10%	
	100k	290.86 kHz	±11.90%	
100 pF	3.3k	1.92 MHz	±9.43%	
	4.7k	1.49 MHz	±9.83%	
	10k	788.77 kHz	±10.92%	
	100k	88.11 kHz	±16.03%	
300 pF	3.3k	726.89 kHz	±10.97%	
	4.7k	573.95 kHz	±10.14%	
	10k	307.31 kHz	±10.43%	
	100k	33.82 kHz	±11.24%	

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

PIC16C71X

INDEX

	Δ.
•	•

A/D	
Accuracy/Error	44
ADIF bit	39
Analog Input Model Block Diagram	40
Analog-to-Digital Converter	37
Configuring Analog Port Pins	41
Configuring the Interrupt	29 29
Configuring the Module	20 20
Connection Considerations	11
Conversion Clock	11
	+1 40
Conversiona 2	+3 40
Conversions	+2
Converter Characteristics	45 40
Delays	10
Effects of a Reset	14
Equations	10
Faster Conversion - Lower Resolution Trade-off4	13
Flowchart of A/D Operation	45
GO/DONE bit	39
Internal Sampling Switch (Rss) Impedence	40
Minimum Charging Time	40
Operation During Sleep	44
Sampling Requirements	40
Source Impedence	40
Time Delays	40
Transfer Function	45
Absolute Maximum Ratings	35
AC Characteristics	
PIC16C710	01
PIC16C711 10	01
PIC16C715 12	25
ADCON0 Register	37
	37
ADCON1 Register 14 3	37
ADCS0 bit	יי 72
	יי 72
	יר סכ
ADIE DIL	20 27
	יכ דר
	21
ADRES Register	39
	. 7
Application Notes	
AN546	37
AN552	27
AN5562	23
AN607, Power-up Trouble Shooting	53
Architecture	
Harvard	. 7
Overview	. 7
von Neumann	. 7
Assembler	
MPASM Assembler	36
R	
Б	

Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	
PIC16C71X	8
RA3/RA0 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Pins	

RB7 RB4 Port Pins	28
	20
Timero	
Timer0/WDT Prescaler	
Watchdog Timer	65
BODEN bit	48
BOR bit	22, 54
Brown-out Reset (BOR)	53

С

C bit	17
C16C71	47
Carry bit	7
CHS0 bit	37
CHS1 bit	37
Clocking Scheme	10
Code Examples	
Call of a Subroutine in Page 1 from Page 0	24
Changing Prescaler (Timer0 to WDT)	35
Changing Prescaler (WDT to Timer0)	35
Doing an A/D Conversion	42
I/O Programming	30
Indirect Addressing	24
Initializing PORTA	25
Initializing PORTB	27
Saving STATUS and W Registers in RAM	64
Code Protection	47, 67
Computed GOTO	23
Configuration Bits	47
CP0 bit	47, 48
CP1 bit	48

D

DC bit	17
DC Characteristics	147
PIC16C71	136
PIC16C710	90, 101
PIC16C711	90, 101
PIC16C715	113, 125
Development Support	3, 85
Development Tools	85
Diagrams - See Block Diagrams	
Digit Carry bit	7
Direct Addressing	24
-	

Е

Electrical Characteristics	
PIC16C71	135
PIC16C710	89
PIC16C711	89
PIC16C715	111
External Brown-out Protection Circuit	60
External Power-on Reset Circuit	60

F

Family of Devices	
PIC16C71X	4
FOSC0 bit	47, 48
FOSC1 bit	47, 48
FSR Register	15, 16, 24
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH [®] -MP)	87
G	
General Description	3

General Description	
GIE bit	
GO/DONE bit	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent	
RE:	: Reader Response		
Fror	m: Name		
	Company		
	Address		
	City / State / ZIP / Country		
Telephone:			
Would you like a reply? Y N			
Device: PIC16C71X Literature Number: DS30272A			
Questions:			
1 What are the best features of this document?			
1.	1. What are the best reatures of this document?		
2.	. How does this document meet your hardware and software development needs?		
3.	Do you find the organization of this data sheet easy to follow? If not, why?		
4.	. What additions to the data sheet do you think would enhance the structure and subject?		
5.	. What deletions from the data sheet could be made without affecting the overall usefulness?		
-			
6.	. Is there any incorrect or misleading information (what and where)?		
7	How would you improve this decument?		
7.			
8.	How would you improve our software, sy	stems, and silicon products?	

NOTES: