



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

## Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 20MHz                                                                      |
| Connectivity               |                                                                            |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                           |
| Number of I/O              | 13                                                                         |
| Program Memory Size        | 896B (512 x 14)                                                            |
| Program Memory Type        | ОТР                                                                        |
| EEPROM Size                | · ·                                                                        |
| RAM Size                   | 36 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | $4V \sim 6V$                                                               |
| Data Converters            | A/D 4x8b                                                                   |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                             |
| Supplier Device Package    | 18-SOIC                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c710-20e-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## TABLE 5-1: PORTA FUNCTIONS

| Name         | Bit# | Buffer | Function                                        |
|--------------|------|--------|-------------------------------------------------|
| RA0/AN0      | bit0 | TTL    | Input/output or analog input                    |
| RA1/AN1      | bit1 | TTL    | Input/output or analog input                    |
| RA2/AN2      | bit2 | TTL    | Input/output or analog input                    |
| RA3/AN3/VREF | bit3 | TTL    | Input/output or analog input/VREF               |
| RA4/T0CKI    | bit4 | ST     | Input/output or external clock input for Timer0 |
|              |      |        | Output is open drain type                       |

Legend: TTL = TTL input, ST = Schmitt Trigger input

## TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

| Address | Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4   | Bit 3                         | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other resets |
|---------|--------|-------|-------|-------|---------|-------------------------------|-------|-------|-------|--------------------------|---------------------------|
| 05h     | PORTA  | _     | —     | —     | RA4     | RA3                           | RA2   | RA1   | RA0   | x 0000                   | u 0000                    |
| 85h     | TRISA  | _     | _     | —     | PORTA D | PORTA Data Direction Register |       |       |       |                          | 1 1111                    |
| 9Fh     | ADCON1 |       | —     | —     | —       | _                             | —     | PCFG1 | PCFG0 | 00                       | 00                        |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

# 7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Applicable Devices 710 71 711 715

The analog-to-digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

| R/W-0    | R/W-0                                                                                                                                                                                                                 | U-0                                           | R/W-0                              | R/W-0                      | R/W-0                        | R/W-0     | R/W-0         |                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|----------------------------|------------------------------|-----------|---------------|-----------------------------------------------------------|
| ADCS1    | ADCS0                                                                                                                                                                                                                 | (1)                                           | CHS1                               | CHS0                       | GO/DONE                      | ADIF      | ADON          | R = Readable bit                                          |
| bit7     | 1                                                                                                                                                                                                                     |                                               |                                    |                            |                              |           | bit0          | W = Writable bit<br>U = Unimplemented<br>bit. read as '0' |
|          |                                                                                                                                                                                                                       |                                               |                                    |                            |                              |           |               | - n =Value at POR reset                                   |
| bit 7-6: | ADCS1:A                                                                                                                                                                                                               | DCS0: A/D                                     | Conversi                           | on Clock S                 | Select bits                  |           |               |                                                           |
|          | 00 = FOS                                                                                                                                                                                                              | C/2                                           |                                    |                            |                              |           |               |                                                           |
|          | 10 = FOS                                                                                                                                                                                                              | c/32                                          |                                    |                            |                              |           |               |                                                           |
|          | 11 = FRC                                                                                                                                                                                                              | (clock deriv                                  | ed from a                          | n RC oscil                 | lation)                      |           |               |                                                           |
| bit 5:   | Unimple                                                                                                                                                                                                               | mented: Re                                    | ad as '0'.                         |                            |                              |           |               |                                                           |
| bit 4-3: | CHS1:CHS0: Analog Channel Select bits<br>00 = channel 0, (RA0/AN0)<br>01 = channel 1, (RA1/AN1)<br>10 = channel 2, (RA2/AN2)<br>11 = channel 3, (RA3/AN3)                                                             |                                               |                                    |                            |                              |           |               |                                                           |
| bit 2:   | GO/DON                                                                                                                                                                                                                | E: A/D Con                                    | version Sta                        | atus bit                   |                              |           |               |                                                           |
|          | If ADON = 1:<br>1 = A/D conversion in progress (setting this bit starts the A/D conversion)<br>0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete) |                                               |                                    |                            |                              |           |               |                                                           |
| bit 1:   | <b>ADIF:</b> A/E<br>1 = conve<br>0 = conve                                                                                                                                                                            | D Conversio<br>ersion is con<br>ersion is not | n Comple<br>nplete (mu<br>complete | te Interrup<br>ist be clea | t Flag bit<br>red in softwar | e)        |               |                                                           |
| bit 0:   | ADON: A                                                                                                                                                                                                               | /D On bit                                     |                                    |                            |                              |           |               |                                                           |
|          | 1 = A/D c<br>0 = A/D c                                                                                                                                                                                                | onverter mo<br>onverter mo                    | odule is op<br>odule is sh         | erating<br>utoff and o     | consumes no                  | operating | current       |                                                           |
| Note 1:  | Bit5 of Al                                                                                                                                                                                                            | DCON0 is a nented, read                       | l General I<br>d as '0'.           | Purpose R                  | R/W bit for the              | PIC16C71  | 0/711 only. F | For the PIC16C71, this bit is                             |
|          | ampen                                                                                                                                                                                                                 | ionieu, iea                                   |                                    |                            |                              |           |               |                                                           |

## FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711

## 7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

## 7.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at <  $\pm$ 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically  $\pm$  1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be  $\leq 8 \ \mu s$  for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

## 7.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

## 7.8 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

| Note: | Care must be taken when using the RA0       |
|-------|---------------------------------------------|
|       | pin in A/D conversions due to its proximity |
|       | to the OSC1 pin.                            |

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k $\Omega$  recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

## 8.3 <u>Reset</u>

## Applicable Devices 710 71 711 715

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) (PIC16C710/711/715)
- Parity Error Reset (PIC16C715)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the  $\overline{\text{MCLR}}$  and

WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 8-7, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 8-10 and Table 8-11 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9.

The PIC16C710/711/715 have a  $\overline{\text{MCLR}}$  noise filter in the  $\overline{\text{MCLR}}$  reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive  $\overline{\text{MCLR}}$  pin low.



## FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

## 8.4.5 TIME-OUT SEQUENCE

## Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if  $\overline{\text{MCLR}}$  is kept low long enough, the time-outs will expire. Then bringing  $\overline{\text{MCLR}}$  high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

## 8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

## Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is  $\overline{\text{PER}}$  (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

## 8.4.7 PARITY ERROR RESET (PER)

## Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

## TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

| Oscillator Configuration | Powe             | Wake-up from SLEEP |           |
|--------------------------|------------------|--------------------|-----------|
|                          | PWRTE = 1        | PWRTE = 0          |           |
| XT, HS, LP               | 72 ms + 1024Tosc | 1024Tosc           | 1024 Tosc |
| RC                       | 72 ms            |                    | _         |

## TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

| Oscillator Configuration | Power            | Power-up  |                  | Wake-up from SLEEP |
|--------------------------|------------------|-----------|------------------|--------------------|
|                          | PWRTE = 0        | PWRTE = 1 | Brown-out        |                    |
| XT, HS, LP               | 72 ms + 1024Tosc | 1024Tosc  | 72 ms + 1024Tosc | 1024Tosc           |
| RC                       | 72 ms            | _         | 72 ms            | _                  |

#### 8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

#### 8.5.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 6.0)

#### 8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

For the PIC16C71 Note: if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

|                          | Q1   Q2   Q3   Q4 | Q1   Q2   Q3   Q4 | Q1   Q2   Q3   Q4                          | Q1   Q2   Q3   Q4 | Q1   Q2   Q3   Q4                     |
|--------------------------|-------------------|-------------------|--------------------------------------------|-------------------|---------------------------------------|
| OSC1 /                   |                   |                   |                                            |                   |                                       |
| CLKOUT ③                 | (4)               |                   |                                            | /                 |                                       |
| INT pin                  |                   | 1                 | 1<br>1<br>1<br>1                           |                   | 1 1<br>1 1<br>1 1<br>1 1              |
| INTF flag<br>(INTCON<1>) |                   |                   | Interrupt Latency (2)                      |                   |                                       |
| GIE bit<br>(INTCON<7>)   |                   |                   |                                            |                   |                                       |
| INSTRUCTION              | FLOW              |                   | ,<br>, , , , , , , , , , , , , , , , , , , |                   | · · · · · · · · · · · · · · · · · · · |
| PC                       | PC                | PC+1              | PC+1                                       | X 0004h           | X 0005h                               |
| Instruction (<br>fetched | Inst (PC)         | Inst (PC+1)       | _                                          | Inst (0004h)      | Inst (0005h)                          |
| Instruction {            | Inst (PC-1)       | Inst (PC)         | Dummy Cycle                                | Dummy Cycle       | Inst (0004h)                          |
|                          |                   |                   |                                            |                   |                                       |

## FIGURE 8-19: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode. 4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

# PIC16C71X

| BCF               | Bit Clear                                                           | r f                     |                 |                       |                   | BTFSC                                                               | Bit Test,                                         | Skip if Cl                 | ear                |        |
|-------------------|---------------------------------------------------------------------|-------------------------|-----------------|-----------------------|-------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------|--------------------|--------|
| Syntax:           | [ <i>label</i> ] B0                                                 | CF f,b                  |                 |                       |                   | Syntax:                                                             | [ <i>label</i> ] B1                               | [ <i>label</i> ] BTFSC f,b |                    |        |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |                         |                 |                       | Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$ |                                                   |                            |                    |        |
| Operation:        | $0 \rightarrow (f < b >)$                                           |                         |                 |                       | Operation:        | skip if (f<                                                         | b>) = 0                                           |                            |                    |        |
| Status Affected:  | None                                                                |                         |                 |                       |                   | Status Affected:                                                    | None                                              |                            |                    |        |
| Encoding:         | 01                                                                  | 00bb                    | bfff            | ffff                  |                   | Encoding:                                                           | 01                                                | 10bb                       | bfff               | ffff   |
| Description:      | Bit 'b' in re                                                       | egister 'f' is          | s cleared.      |                       |                   | Description:                                                        | lf bit 'b' in                                     | register 'f' is            | s '1' then th      | e next |
| Words:            | 1                                                                   |                         |                 |                       |                   |                                                                     | instruction is executed.                          |                            |                    |        |
| Cycles:           | 1                                                                   |                         |                 |                       |                   |                                                                     | instruction                                       | is discarde                | ed, and a N        | NOP is |
| Q Cycle Activity: | Q1                                                                  | Q2                      | Q3              | Q4                    |                   |                                                                     | executed instead, making this a 2Tcv instruction. |                            |                    | 2TCY   |
|                   | Decode                                                              | Read<br>register<br>'f' | Process<br>data | Write<br>register 'f' |                   | Words:<br>Cycles:                                                   | 1<br>1(2)                                         |                            |                    |        |
| Example           | BCF                                                                 | FLAG_                   | REG, 7          |                       | Q Cycle Activity: | Q1                                                                  | Q2                                                | Q3                         | Q4                 |        |
| ·                 | Before In                                                           | struction               |                 | ,                     |                   |                                                                     | Decode                                            | Read<br>register 'f'       | Process<br>data    | NOP    |
|                   | After Inst                                                          | ruction                 | =G = 0xC7       |                       |                   | If Skip:                                                            | (2nd Cycle)                                       |                            |                    |        |
|                   |                                                                     | FLAG_RE                 | EG = 0x47       |                       |                   |                                                                     | Q1                                                | Q2                         | Q3                 | Q4     |
|                   |                                                                     |                         |                 |                       |                   |                                                                     | NOP                                               | NOP                        | NOP                | NOP    |
|                   |                                                                     |                         |                 |                       |                   | Example                                                             | HERE<br>FALSE<br>TRUE                             | BTFSC<br>GOTO<br>•         | FLAG,1<br>PROCESS_ | _CODE  |

| -                     |      |  |  |  |  |
|-----------------------|------|--|--|--|--|
| Before Instruction    |      |  |  |  |  |
| PC = address          | HERE |  |  |  |  |
| After Instruction     |      |  |  |  |  |
| if $FLAG < 1 > = 0$ , |      |  |  |  |  |

| PC =     | address | TRUE  |
|----------|---------|-------|
| if FLAG< | :1>=1,  |       |
| PC =     | address | FALSE |

| BSF               | Bit Set f                                                                     |                         |                 |                       |  |  |
|-------------------|-------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|--|--|
| Syntax:           | [ <i>label</i> ] BS                                                           | SF f,b                  |                 |                       |  |  |
| Operands:         | $\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$           |                         |                 |                       |  |  |
| Operation:        | $1 \rightarrow (f < b;$                                                       | >)                      |                 |                       |  |  |
| Status Affected:  | None                                                                          |                         |                 |                       |  |  |
| Encoding:         | 01                                                                            | 01bb                    | bfff            | ffff                  |  |  |
| Description:      | Bit 'b' in register 'f' is set.                                               |                         |                 |                       |  |  |
| Words:            | 1                                                                             |                         |                 |                       |  |  |
| Cycles:           | 1                                                                             |                         |                 |                       |  |  |
| Q Cycle Activity: | Q1                                                                            | Q2                      | Q3              | Q4                    |  |  |
|                   | Decode                                                                        | Read<br>register<br>'f' | Process<br>data | Write<br>register 'f' |  |  |
| Example           | BSF FLAG_REG, 7<br>Before Instruction<br>FLAG_REG = 0x0A<br>After Instruction |                         |                 |                       |  |  |
|                   |                                                                               |                         |                 | 1<br>1                |  |  |

| BTFSS             | Bit Test                                                                                                                                                                                                      | f, Skip if S                                                         | Set                                             |                           | CALL                                                                                                                                                                                                                          | Call Sub                                                                                                       | routine                  |                        |                |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------|
| Syntax:           | [ <i>label</i> ] B]                                                                                                                                                                                           | FSS f,b                                                              |                                                 |                           | Syntax:                                                                                                                                                                                                                       | [ label ]                                                                                                      | CALL 4                   | K                      |                |
| Operands:         | 0 ≤ f ≤ 12<br>0 ≤ b < 7                                                                                                                                                                                       | 27                                                                   |                                                 |                           | Operands:                                                                                                                                                                                                                     | $0 \le k \le 2047$                                                                                             |                          |                        |                |
| Operation:        | skip if (f<                                                                                                                                                                                                   | :b>) = 1                                                             |                                                 |                           | Operation.                                                                                                                                                                                                                    | $(PC) + 1 \rightarrow 103,$<br>$k \rightarrow PC < 10:0>,$<br>$(PC) \wedge TH < 4:3>) \rightarrow PC < 12:11>$ |                          |                        | ·11、           |
| Status Affected:  | None                                                                                                                                                                                                          |                                                                      |                                                 |                           | Status Affastad                                                                                                                                                                                                               | None                                                                                                           | 1<4.32) -                | 710012                 |                |
| Encoding:         | 01                                                                                                                                                                                                            | 11bb                                                                 | bfff                                            | ffff                      | Status Allected:                                                                                                                                                                                                              | None                                                                                                           |                          |                        | 1              |
| Description:      | If bit 'b' in register 'f' is '0' then the next<br>instruction is executed.<br>If bit 'b' is '1', then the next instruction is<br>discarded and a NOP is executed<br>instead, making this a 2TCY instruction. |                                                                      |                                                 | Encoding:<br>Description: | 10         0kkk         kkkk         kkkk           Call Subroutine. First, return address<br>(PC+1) is pushed onto the stack. The<br>eleven bit immediate address is loaded<br>into PC bits <10.0>         The upper bits of |                                                                                                                |                          |                        |                |
| Words:            | 1                                                                                                                                                                                                             |                                                                      |                                                 |                           |                                                                                                                                                                                                                               | the PC are                                                                                                     | e loaded fi<br>two cycle | om PCLA                | TH.            |
| Cycles:           | 1(2)                                                                                                                                                                                                          |                                                                      |                                                 |                           | Words                                                                                                                                                                                                                         | 1                                                                                                              |                          |                        |                |
| Q Cycle Activity: | Cycle Activity: Q1 Q2 Q3                                                                                                                                                                                      |                                                                      | Q4                                              | Cvcles:                   | 2                                                                                                                                                                                                                             |                                                                                                                |                          |                        |                |
|                   | Decode                                                                                                                                                                                                        | Read<br>register 'f'                                                 | Process<br>data                                 | NOP                       | Q Cycle Activity:                                                                                                                                                                                                             | Q1                                                                                                             | Q2                       | Q3                     | Q4             |
| If Skip:          | (2nd Cycle)                                                                                                                                                                                                   |                                                                      |                                                 |                           | 1st Cycle                                                                                                                                                                                                                     | Decode                                                                                                         | Read<br>literal 'k',     | Process<br>data        | Write to<br>PC |
|                   | Q1                                                                                                                                                                                                            | Q2                                                                   | Q3                                              | Q4                        |                                                                                                                                                                                                                               |                                                                                                                | Push PC<br>to Stack      |                        |                |
|                   | NOP                                                                                                                                                                                                           | NOP                                                                  | NOP                                             | NOP                       | 2nd Cycle                                                                                                                                                                                                                     | NOP                                                                                                            | NOP                      | NOP                    | NOP            |
| Example           | HERE<br>FALSE                                                                                                                                                                                                 | BTFSC<br>GOTO                                                        | FLAG,1<br>PROCESS                               | CODE                      | Example                                                                                                                                                                                                                       | HERE                                                                                                           | CALL                     | THERE                  |                |
|                   | TRUE                                                                                                                                                                                                          |                                                                      |                                                 |                           |                                                                                                                                                                                                                               | Before Instruction<br>PC = Address HERE<br>After Instruction                                                   |                          |                        |                |
|                   | Before In                                                                                                                                                                                                     | struction<br>PC = a<br>ruction<br>if FLAG<1><br>PC = a<br>if FLAG<1> | address $H$<br>> = 0,<br>address $FT$<br>> = 1, | IERE                      |                                                                                                                                                                                                                               |                                                                                                                | PC = A<br>TOS = A        | ddress TH<br>ddress HH | IERE<br>CRE+1  |

# PIC16C71X

| GOTO              | Unconditional Branch                                              |                                              |                 |                |  |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------|----------------------------------------------|-----------------|----------------|--|--|--|--|--|--|
| Syntax:           | [ label ]                                                         | GOTO                                         | k               |                |  |  |  |  |  |  |
| Operands:         | $0 \le k \le 2047$                                                |                                              |                 |                |  |  |  |  |  |  |
| Operation:        | $k \rightarrow PC < 10:0>$<br>PCLATH<4:3> $\rightarrow$ PC<12:11> |                                              |                 |                |  |  |  |  |  |  |
| Status Affected:  | None                                                              |                                              |                 |                |  |  |  |  |  |  |
| Encoding:         | 10                                                                | 1kkk                                         | kkkk            | kkkk           |  |  |  |  |  |  |
| Description:      | tional bran<br>e value is l<br>The uppe<br>PCLATH<<br>instructior | ch. The<br>oaded<br>r bits of<br>4:3>.<br>n. |                 |                |  |  |  |  |  |  |
| Words:            | 1                                                                 |                                              |                 |                |  |  |  |  |  |  |
| Cycles:           | 2                                                                 |                                              |                 |                |  |  |  |  |  |  |
| Q Cycle Activity: | Q1                                                                | Q2                                           | Q3              | Q4             |  |  |  |  |  |  |
| 1st Cycle         | Decode                                                            | Read<br>literal 'k'                          | Process<br>data | Write to<br>PC |  |  |  |  |  |  |
| 2nd Cycle         | NOP                                                               | NOP                                          | NOP             | NOP            |  |  |  |  |  |  |
| Example           | GOTO TI<br>After Inst                                             | HERE<br>ruction<br>PC =                      | Address         | THERE          |  |  |  |  |  |  |

| INCF              | Increme                                               | nt f                                                       |                                                          |                               |
|-------------------|-------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------------------------------|
| Syntax:           | [ label ]                                             | INCF f                                                     | ,d                                                       |                               |
| Operands:         | $0 \le f \le 12$<br>$d \in [0,1]$                     | 7                                                          |                                                          |                               |
| Operation:        | (f) + 1 $\rightarrow$                                 | (dest)                                                     |                                                          |                               |
| Status Affected:  | Z                                                     |                                                            |                                                          |                               |
| Encoding:         | 00                                                    | 1010                                                       | dfff                                                     | ffff                          |
| Description:      | The conter<br>mented. If<br>in the W re<br>placed bac | nts of reg<br>'d' is 0 the<br>egister. If '<br>ck in regis | ister 'f' are<br>e result is<br>d' is 1 the<br>ster 'f'. | incre-<br>placed<br>result is |
| Words:            | 1                                                     |                                                            |                                                          |                               |
| Cycles:           | 1                                                     |                                                            |                                                          |                               |
| Q Cycle Activity: | Q1                                                    | Q2                                                         | Q3                                                       | Q4                            |
|                   | Decode                                                | Read<br>register<br>'f'                                    | Process<br>data                                          | Write to<br>dest              |
| Example           | INCF                                                  | CNT,                                                       | 1                                                        |                               |
|                   | Before In                                             | struction<br>CNT<br>Z                                      | = 0xFl<br>= 0                                            | =                             |
|                   | After Inst                                            | ruction                                                    |                                                          |                               |
|                   |                                                       | CNT<br>7                                                   | = 0x00                                                   | )                             |

| RETLW             | Return with Literal in W                                                                                                                                                           |                             |                                     |                                         |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| Syntax:           | [ label ]                                                                                                                                                                          | RETLW                       | k                                   |                                         |  |  |  |  |  |  |
| Operands:         | $0 \le k \le 25$                                                                                                                                                                   | 55                          |                                     |                                         |  |  |  |  |  |  |
| Operation:        | $k \rightarrow (W);$<br>TOS $\rightarrow$ PC                                                                                                                                       |                             |                                     |                                         |  |  |  |  |  |  |
| Status Affected:  | None                                                                                                                                                                               |                             |                                     |                                         |  |  |  |  |  |  |
| Encoding:         | 11                                                                                                                                                                                 | 01xx                        | kkkk                                | kkkk                                    |  |  |  |  |  |  |
| Description:      | The W register is loaded with the eight<br>bit literal 'k'. The program counter is<br>loaded from the top of the stack (the<br>return address). This is a two cycle<br>instruction |                             |                                     |                                         |  |  |  |  |  |  |
| Words:            | 1                                                                                                                                                                                  |                             |                                     |                                         |  |  |  |  |  |  |
| Cycles:           | 2                                                                                                                                                                                  |                             |                                     |                                         |  |  |  |  |  |  |
| Q Cycle Activity: | Q1                                                                                                                                                                                 | Q2                          | Q3                                  | Q4                                      |  |  |  |  |  |  |
| 1st Cycle         | Decode                                                                                                                                                                             | Read<br>literal 'k'         | NOP                                 | Write to<br>W, Pop<br>from the<br>Stack |  |  |  |  |  |  |
| 2nd Cycle         | NOP                                                                                                                                                                                | NOP                         | NOP                                 | NOP                                     |  |  |  |  |  |  |
| Example           | CALL TABLE                                                                                                                                                                         | E ;W con<br>;offse<br>;W no | tains tabl<br>t value<br>ow has tab | le<br>Dle value                         |  |  |  |  |  |  |
| TABLE             | ADDWF PC<br>RETLW k1<br>RETLW k2                                                                                                                                                   | ;W = of<br>;Begin<br>;      | fset<br>table                       |                                         |  |  |  |  |  |  |
|                   | RETLW kn                                                                                                                                                                           | ; End o                     | f table                             |                                         |  |  |  |  |  |  |
|                   |                                                                                                                                                                                    | Siluciion<br>W =            | 0x07                                |                                         |  |  |  |  |  |  |
|                   | After Inst                                                                                                                                                                         | ruction                     |                                     | -                                       |  |  |  |  |  |  |
|                   |                                                                                                                                                                                    | VV =                        | value of k                          | 8                                       |  |  |  |  |  |  |

| Return from Subroutine                                |                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [ label ]                                             | RETUR                                                                                                                                                                            | N                                                                                                                                                                                           |                                                                                                                                                                                                                                                                          |  |  |  |  |
| None                                                  |                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
| $\text{TOS} \to \text{F}$                             | °C                                                                                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
| None                                                  |                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
| 00                                                    | 0000                                                                                                                                                                             | 0000                                                                                                                                                                                        | 1000                                                                                                                                                                                                                                                                     |  |  |  |  |
| Return fro<br>POPed an<br>is loaded i<br>This is a tw | m subrou<br>d the top<br>nto the pr<br>vo cycle i                                                                                                                                | tine. The s<br>of the stac<br>ogram cou<br>nstruction.                                                                                                                                      | tack is<br>k (TOS)<br>ınter.                                                                                                                                                                                                                                             |  |  |  |  |
| 1                                                     |                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
| 2                                                     |                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          |  |  |  |  |
| Q1                                                    | Q2                                                                                                                                                                               | Q3                                                                                                                                                                                          | Q4                                                                                                                                                                                                                                                                       |  |  |  |  |
| Decode                                                | NOP                                                                                                                                                                              | NOP                                                                                                                                                                                         | Pop from the Stack                                                                                                                                                                                                                                                       |  |  |  |  |
| NOP                                                   | NOP                                                                                                                                                                              | NOP                                                                                                                                                                                         | NOP                                                                                                                                                                                                                                                                      |  |  |  |  |
| RETURN<br>After Inte                                  | rrupt<br>PC =                                                                                                                                                                    | TOS                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                       | Return fr<br>[ <i>label</i> ]<br>None<br>TOS → F<br>None<br>00<br>Return fro<br>POPed an<br>is loaded i<br>This is a tw<br>1<br>2<br>Q1<br>Decode<br>NOP<br>RETURN<br>After Inte | Return from Sub[ label ]RETURNoneTOS $\rightarrow$ PCNone00000000Return from subrouPOPed and the topis loaded into the prThis is a two cycle i12Q1Q2DecodeNOPNOPNOPRETURNAfter InterruptPC= | Return from Subroutine[ label ]RETURNNoneTOS $\rightarrow$ PCNone000000000000000Return from subroutine. The sPOPed and the top of the stactist loaded into the program couthis is a two cycle instruction.12Q1Q2Q3DecodeNOPNOPNOPNOPNOPRETURNAfter Interrupt<br>PC = TOS |  |  |  |  |

# PIC16C71X

| Appli | cable Devices | 710 71   | 711 715                                                                                                                                                                                                                                                     |
|-------|---------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.1  | DC Character  | ristics: | PIC16C710-04 (Commercial, Industrial, Extended)<br>PIC16C711-04 (Commercial, Industrial, Extended)<br>PIC16C710-10 (Commercial, Industrial, Extended)<br>PIC16C711-10 (Commercial, Industrial, Extended)<br>PIC16C710-20 (Commercial, Industrial, Extended) |
|       |               |          | PIC16C711-20 (Commercial, Industrial, Extended)                                                                                                                                                                                                             |

| DC CHA         | RACTERISTICS                                                      |       | <b>Stand</b><br>Opera | lard O<br>ating te | p <b>erati</b><br>mpera | n <b>g Con</b><br>ture (<br>- | ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $\cdot40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $\cdot40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended) |
|----------------|-------------------------------------------------------------------|-------|-----------------------|--------------------|-------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param.<br>No.  | Characteristic                                                    | Sym   | Min                   | Тур†               | Мах                     | Units                         | Conditions                                                                                                                                                                                                     |
| D001<br>D001A  | Supply Voltage                                                    | Vdd   | 4.0<br>4.5            |                    | 6.0<br>5.5              | V<br>V                        | XT, RC and LP osc configuration<br>HS osc configuration                                                                                                                                                        |
| D002*          | RAM Data Retention<br>Voltage (Note 1)                            | Vdr   | -                     | 1.5                | -                       | V                             |                                                                                                                                                                                                                |
| D003           | VDD start voltage to<br>ensure internal Power-<br>on Reset signal | VPOR  | -                     | Vss                | -                       | V                             | See section on Power-on Reset for details                                                                                                                                                                      |
| D004*          | VDD rise rate to ensure<br>internal Power-on Reset<br>signal      | SVDD  | 0.05                  | -                  | -                       | V/ms                          | See section on Power-on Reset for details                                                                                                                                                                      |
| D005           | Brown-out Reset Voltage                                           | Bvdd  | 3.7                   | 4.0                | 4.3                     | V                             | BODEN configuration bit is enabled                                                                                                                                                                             |
|                |                                                                   |       | 3.7                   | 4.0                | 4.4                     | V                             | Extended Range Only                                                                                                                                                                                            |
| D010           | Supply Current (Note 2)                                           | IDD   | -                     | 2.7                | 5                       | mA                            | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 5.5V (Note 4)                                                                                                                                                  |
| D013           |                                                                   |       | -                     | 13.5               | 30                      | mA                            | HS osc configuration<br>Fosc = 20 MHz, VDD = 5.5V                                                                                                                                                              |
| D015           | Brown-out Reset Current<br>(Note 5)                               | ΔIBOR | -                     | 300*               | 500                     | μA                            | BOR enabled VDD = 5.0V                                                                                                                                                                                         |
| D020           | Power-down Current                                                | IPD   | -                     | 10.5               | 42                      | μA                            | $VDD = 4.0V$ , WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$                                                                                                                                                   |
| D021           | (Note 3)                                                          |       | -                     | 1.5                | 21                      | μΑ                            | VDD = $4.0V$ , WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$                                                                                                                                                   |
| D021A<br>D021B |                                                                   |       | -                     | 1.5                | 30                      | μΑ<br>μΑ                      | $VDD = 4.0V$ , $VDT$ disabled, $-40^{\circ}C$ to $+85^{\circ}C$<br>$VDD = 4.0V$ , $WDT$ disabled, $-40^{\circ}C$ to $+125^{\circ}C$                                                                            |
| D023           | Brown-out Reset Current<br>(Note 5)                               | ΔIBOR | -                     | 300*               | 500                     | μA                            | BOR enabled VDD = 5.0V                                                                                                                                                                                         |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.









## FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD



## FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD







|     |       | $\sim$                       |       |                         |       |                     |                   |                            |       |                            |
|-----|-------|------------------------------|-------|-------------------------|-------|---------------------|-------------------|----------------------------|-------|----------------------------|
|     |       |                              |       |                         |       |                     |                   |                            |       |                            |
| OSC |       | PIC16C715-04                 |       | <pre>PIC16C715-10</pre> |       | PIC16C715-20        |                   | PIC16LC715-04              |       | PIC16C715/JW               |
|     | VDD:  | 4.0V to 5.5V                 | VDD:  | 4.5V to 5.5V            | VDD:  | 4.5V to 5.5V        | VDD:              | 2.5V to 5.5V               | VDD:  | 4.0V to 5.5V               |
| PC  | IDD:  | 5 mA max. at 5.5V            | IDD:  | 2.7 mA typ. at \$.5)    | IDD:  | 2.7 mA typ. at 5.5V | IDD:              | 2.0 mA typ. at 3.0V        | IDD:  | 5 mA max. at 5.5V          |
|     | IPD:  | 21 μA max. at 4V             | IPD:  | 1.5 μA typ. at 4V       | IPD:  | 1.5 μA typ. at 4V   | IPD:              | 0.9 μA typ. at 3V          | IPD:  | 21 μA max. at 4V           |
|     | Freq: | 4 MHz max.                   | Freq: | 4 MHz max. >            | Freq: | 4 MHz max.          | Freq:             | 4 MHz max.                 | Freq: | 4 MHz max.                 |
|     | VDD:  | 4.0V to 5.5V                 | VDD:  | 4.5V to 5.5V /          | VDD:  | 4.5V to 5.5V        | VDD:              | 2.5V to 5.5V               | VDD:  | 4.0V to 5.5V               |
| VT  | IDD:  | 5 mA max. at 5.5V            | IDD:  | 2.7 mA typ. at 5.5V     | IDD:  | 2.7/mA typ. at 5.5V | IDD:              | 2.0 mA typ. at 3.0V        | IDD:  | 5 mA max. at 5.5V          |
|     | IPD:  | 21 μA max. at 4V             | IPD:  | 1.5 μA typ. at 4V       | NgD:  | 1.5 µA typ at 4V    | IPD:              | 0.9 μA typ. at 3V          | IPD:  | 21 μA max. at 4V           |
|     | Freq: | 4 MHz max.                   | Freq: | 4 MHz max.              | Freq. | 4 MHz max.          | Freq:             | 4 MHz max.                 | Freq: | 4 MHz max.                 |
|     | VDD:  | 4.5V to 5.5V                 | VDD:  | 4.5V to 5.5V            | V6p:  | 4.5V/to 5,5V/       |                   |                            | Vdd:  | 4.5V to 5.5V               |
| це  | IDD:  | 13.5 mA typ. at 5.5V         | IDD:  | 30 mA max. at 5.5V      | IDD:  | 30 mA max. at 5.5V  |                   | tuco in US modo            | IDD:  | 30 mA max. at 5.5V         |
|     | IPD:  | 1.5 μA typ. at 4.5V          | IPD:  | 1.5 μA typ. at 4.5V     | IPD:  | 1.5 μA typ. at 4.5V |                   | d use in HS mode           | IPD:  | 1.5 μA typ. at 4.5V        |
|     | Freq: | 4 MHz max.                   | Freq: | 10 MHz max.             | Freq: | 20 MHz max.         | $\langle \rangle$ |                            | Freq: | 10 MHz max.                |
|     | VDD:  | 4.0V to 5.5V                 |       |                         |       |                     | YOD:              | 2.5V to 5.5V               | Vdd:  | 2.5V to 5.5V               |
|     | IDD:  | 52.5 μA typ. at 32 kHz, 4.0V | Dong  | tuso in LP modo         | Dono  |                     | IDD:/             | 48 μA max. at 32 kHz, 3.0V | IDD:  | 48 μA max. at 32 kHz, 3.0V |
|     | IPD:  | 0.9 μA typ. at 4.0V          |       |                         |       |                     | IPG: /            | /5.Ø μA max. at 3.0V       | IPD:  | 5.0 μA max. at 3.0V        |
|     | Freq: | 200 kHz max.                 |       |                         |       | /                   | Freq:             | / 200 kHz max.             | Freq: | 200 kHz max.               |

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

**TABLE 13-1:** 

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

## FIGURE 13-7: A/D CONVERSION TIMING



# TABLE 13-8: A/D CONVERSION REQUIREMENTS

| Parameter | Sym  | Characteristic             | Min    | Typt/             | Max | Units | Conditions             |
|-----------|------|----------------------------|--------|-------------------|-----|-------|------------------------|
| No.       |      |                            |        |                   |     |       |                        |
| 130       | TAD  | A/D clock period           | 1.6    | $\langle // /$    | × _ | μs    | $VREF \ge 3.0V$        |
|           |      |                            | 2.0    |                   |     | μs    | VREF full range        |
| 130       | TAD  | A/D Internal RC            |        | $\land \lor$      |     |       | ADCS1:ADCS0 = 11       |
|           |      | Oscillator source          |        | $\langle \rangle$ |     |       | (RC oscillator source) |
|           |      | $\langle \rangle$          | 3.0    | 6.0               | 9.0 | μs    | PIC16LC715, VDD = 3.0V |
|           |      | $ \land \land$             | 2.0    | 4.0               | 6.0 | μs    | PIC16C715              |
| 131       | TCNV | Conversion time            |        | 9.5TAD            | —   | —     |                        |
|           |      | (not including S/H         | $\sim$ |                   |     |       |                        |
|           |      | time). Note <sup>*</sup> 1 | 12     |                   |     |       |                        |
| 132       | TACQ | Acquisition time           | Note 2 | 20                | _   | μs    |                        |

\* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

| Applica | ble Devices 710 71 711 715                                       |                             |                               |                         |                            |                         |                                                             |  |  |
|---------|------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------|----------------------------|-------------------------|-------------------------------------------------------------|--|--|
| 15.3    | DC Characteristics: PIC16C71<br>PIC16C71<br>PIC16LC7<br>PIC16LC7 | -04 (0<br>-20 (0<br>1-04 (0 | Commerc<br>Commerc<br>Commerc | cial,<br>cial,<br>cial, | Indust<br>Indust<br>Indust | rial)<br>rial)<br>rial) |                                                             |  |  |
|         |                                                                  | Standa                      | rd Opera                      | ting                    | Conditi                    | ons (u                  | nless otherwise stated)                                     |  |  |
|         |                                                                  | OOpera                      | ating temp                    | erat                    | ure 0°C                    | ≤                       | $TA \leq +70^{\circ}C$ (commercial)                         |  |  |
| DC CHA  | RACTERISTICS                                                     | <b>•</b>                    |                               | × /-                    | -40°                       | C _≤                    | $IA \leq +85^{\circ}C$ (industrial)                         |  |  |
|         |                                                                  | Operation operation         | ng voltage                    | e vd                    | D range                    | as des                  | cribed in DC spec Section 15.1                              |  |  |
| Daram   | Berom Characteristic Sum Min Tun Max Units Conditions            |                             |                               |                         |                            |                         |                                                             |  |  |
| No.     | Gharacteristic                                                   | Sym                         |                               | 1<br>1                  | WIAN                       | Units                   | Conditions                                                  |  |  |
|         | Input Low Voltage                                                |                             |                               |                         |                            |                         |                                                             |  |  |
|         | I/O ports                                                        | VIL                         |                               |                         |                            |                         |                                                             |  |  |
| D030    | with TTL buffer                                                  |                             | Vss                           | -                       | 0.15V                      | V                       | For entire VDD range                                        |  |  |
| D031    | with Schmitt Trigger buffer                                      |                             | Vss                           | -                       | 0.8V                       | V                       | $4.5 \leq VDD \leq 5.5V$                                    |  |  |
| D032    | MCLR, OSC1 (in RC mode)                                          |                             | Vss                           | -                       | 0.2Vdd                     | V                       |                                                             |  |  |
| D033    | OSC1 (in XT, HS and LP)                                          |                             | Vss                           | -                       | 0.3Vdd                     | V                       | Note1                                                       |  |  |
|         | Input High Voltage                                               |                             |                               |                         |                            |                         |                                                             |  |  |
|         | I/O ports (Note 4)                                               | Vін                         |                               | -                       |                            |                         |                                                             |  |  |
| D040    | with TTL buffer                                                  |                             | 2.0                           | -                       | Vdd                        | V                       | $4.5 \le VDD \le 5.5V$                                      |  |  |
| D040A   |                                                                  |                             | 0.25VDD<br>+ 0.8V             | -                       | Vdd                        |                         | For entire VDD range                                        |  |  |
| D041    | with Schmitt Trigger buffer                                      |                             | 0.85Vdd                       | -                       | Vdd                        |                         | For entire VDD range                                        |  |  |
| D042    | MCLR, RB0/INT                                                    |                             | 0.85Vdd                       | -                       | Vdd                        | V                       |                                                             |  |  |
| D042A   | OSC1 (XT, HS and LP)                                             |                             | 0.7Vdd                        | -                       | Vdd                        | V                       | Note1                                                       |  |  |
| D043    | OSC1 (in RC mode)                                                |                             | 0.9Vdd                        | -                       | Vdd                        | V                       |                                                             |  |  |
| D070    | PORTB weak pull-up current                                       | IPURB                       | 50                            | 250                     | †400                       | μΑ                      | VDD = 5V, VPIN = VSS                                        |  |  |
|         | Input Leakage Current (Notes 2, 3)                               |                             |                               |                         |                            |                         |                                                             |  |  |
| D060    | I/O ports                                                        | lı∟                         | -                             | -                       | ±1                         | μA                      | Vss $\leq$ VPIN $\leq$ VDD, Pin at hi-<br>impedance         |  |  |
| D061    | MCLR, RA4/T0CKI                                                  |                             | -                             | -                       | ±5                         | μΑ                      | $Vss \le VPIN \le VDD$                                      |  |  |
| D063    | OSC1                                                             |                             | -                             | -                       | ±5                         | μA                      | Vss $\leq$ VPIN $\leq$ VDD, XT, HS and LP osc configuration |  |  |
|         | Output Low Voltage                                               |                             |                               |                         |                            |                         |                                                             |  |  |
| D080    | I/O ports                                                        | Vol                         | -                             | -                       | 0.6                        | V                       | IOL = 8.5mA, VDD = 4.5V,<br>-40°C to +85°C                  |  |  |
| D083    | OSC2/CLKOUT (RC osc config)                                      |                             | -                             | -                       | 0.6                        | V                       | IOL = 1.6mA, VDD = 4.5V,<br>-40°C to +85°C                  |  |  |
|         | Output High Voltage                                              |                             |                               |                         |                            |                         |                                                             |  |  |
| D090    | I/O ports (Note 3)                                               | Vон                         | VDD - 0.7                     | -                       | -                          | V                       | IOH = -3.0mA, VDD = 4.5V,<br>-40°С to +85°С                 |  |  |
| D092    | OSC2/CLKOUT (RC osc config)                                      |                             | Vdd - 0.7                     | -                       | -                          | V                       | IOH = -1.3mA, VDD = 4.5V,<br>-40°С to +85°С                 |  |  |
| D130*   | Open-Drain High Voltage                                          | Vod                         | -                             | -                       | 14                         | V                       | RA4 pin                                                     |  |  |
| ·       |                                                                  |                             | · · · ·                       |                         |                            |                         |                                                             |  |  |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

| DC CHAF | ACTERISTICS                                                                                                  | Standa<br>OOpera<br>Operatin<br>and Sec | rd Opera<br>iting temp<br>ng voltage<br>ction 15.2 | ting<br>beratu<br>e VDD | Conditi<br>ure 0°C<br>-40°<br>o range | ons (u<br>≤<br>C ≤<br>as dese | nless otherwise stated)<br>TA ≤ +70°C (commercial)<br>TA ≤ +85°C (industrial)<br>cribed in DC spec Section 15.1 |  |
|---------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-------------------------|---------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Param   | Characteristic                                                                                               | Sym                                     | Min                                                | Typ<br>+                | Мах                                   | Units                         | Conditions                                                                                                      |  |
| NO.     | Conscitive Londing Space on                                                                                  |                                         |                                                    |                         |                                       |                               |                                                                                                                 |  |
|         | Output Pins                                                                                                  |                                         |                                                    |                         |                                       |                               |                                                                                                                 |  |
| D100    | OSC2 pin                                                                                                     | Cosc2                                   |                                                    |                         | 15                                    | pF                            | In XT, HS and LP modes when<br>external clock is used to drive<br>OSC1.                                         |  |
| D101    | All I/O pins and OSC2 (in RC mode)                                                                           | Сю                                      |                                                    |                         | 50                                    | pF                            |                                                                                                                 |  |
| + [     | † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only |                                         |                                                    |                         |                                       |                               |                                                                                                                 |  |

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 3: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

## FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)



NOTES:

## I

| I/O Ports                                     |            |
|-----------------------------------------------|------------|
| PORTA                                         |            |
| PORTB                                         | 27         |
| Section                                       |            |
| I/O Programming Considerations                |            |
| ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator | 85         |
| In-Circuit Serial Programming                 | 47, 67     |
| INDF Register                                 | 14, 16, 24 |
| Indirect Addressing                           | 24         |
| Instruction Cycle                             | 10         |
| Instruction Flow/Pipelining                   | 10         |
| Instruction Format                            | 69         |
| Instruction Set                               |            |
| ADDLW                                         |            |
|                                               |            |
| ANDLW                                         |            |
| ANDWF                                         |            |
|                                               |            |
| BSF                                           |            |
| BIFSC                                         |            |
| BIF55                                         |            |
|                                               |            |
|                                               |            |
|                                               |            |
|                                               |            |
|                                               |            |
| DECESZ                                        |            |
| GOTO                                          |            |
| INCE                                          | 76         |
| INCESZ                                        |            |
| IORLW                                         |            |
| IORWF                                         |            |
| MOVF                                          |            |
| MOVLW                                         |            |
| MOVWF                                         | 78         |
| NOP                                           | 79         |
| OPTION                                        | 79         |
| RETFIE                                        | 79         |
| RETLW                                         | 80         |
| RETURN                                        | 80         |
| RLF                                           | 81         |
| RRF                                           | 81         |
| SLEEP                                         | 82         |
| SUBLW                                         | 82         |
| SUBWF                                         |            |
| SWAPF                                         | 83         |
|                                               | 83         |
|                                               |            |
|                                               |            |
| Section                                       |            |
| INT Interrupt                                 |            |
| INTCON Register                               |            |
| INTE hit                                      | 10         |
| INTEDG bit                                    | 18 63      |
| Internal Sampling Switch (Rss) Impedence      | 10, 00     |
| Interrunts                                    |            |
| A/D                                           |            |
| External                                      |            |
| PORTB Change                                  |            |
| PortB Change                                  |            |
| RB7:RB4 Port Change                           |            |
| Section                                       | 61         |
| TMR0                                          | 63         |
|                                               |            |

| TMR0 Overflow                                         | 61     |
|-------------------------------------------------------|--------|
| INTF bit                                              |        |
| IRP bit                                               | 17     |
| К                                                     |        |
| KeeLoq <sup>®</sup> Evaluation and Programming Tools  | 87     |
| L                                                     |        |
| Loading of PC                                         | 23     |
| LP                                                    |        |
| Μ                                                     |        |
| MCLR                                                  | 52, 56 |
| Memory                                                |        |
| Data Memory                                           |        |
| Program Memory                                        | 11     |
| Register File Maps                                    |        |
| PIC16C71                                              | 12     |
| PIC16C710                                             | 12     |
| PIC16C711                                             | 13     |
| PIC16C715                                             | 13     |
| MP-DriveWay™ - Application Code Generator             | 87     |
| MPEEN bit                                             | 22, 48 |
| MPLAB™ C                                              | 87     |
| MPLAB <sup>™</sup> Integrated Development Environment |        |
| Software                                              | 86     |

## 0

| OPCODE                          |        |
|---------------------------------|--------|
| OPTION Register                 |        |
| Orthogonal                      | 7      |
| OSC selection                   | 47     |
| Oscillator                      |        |
| HS                              | 49, 54 |
| LP                              | 49, 54 |
| RC                              | 49     |
| XT                              | 49, 54 |
| Oscillator Configurations       | 49     |
| Oscillator Start-up Timer (OST) | 53     |
|                                 |        |

## Ρ

| Packaging                                                 |       |
|-----------------------------------------------------------|-------|
| 18-Lead CERDIP w/Window                                   | . 155 |
| 18-Lead PDIP                                              | . 156 |
| 18-Lead SOIC                                              | . 157 |
| 20-Lead SSOP                                              | . 158 |
| Paging, Program Memory                                    | 23    |
| PCL Register 14, 15, 1                                    | 6, 23 |
| PCLATH                                                    | 7, 58 |
| PCLATH Register 14, 15, 1                                 | 6, 23 |
| PCON Register 2                                           | 2, 54 |
| PD bit 17, 5                                              | 2, 55 |
| PER bit                                                   | 22    |
| PIC16C71                                                  | . 147 |
| AC Characteristics                                        | . 147 |
| PICDEM-1 Low-Cost PIC16/17 Demo Board                     | 86    |
| PICDEM-2 Low-Cost PIC16CXX Demo Board                     | 86    |
| PICDEM-3 Low-Cost PIC16CXXX Demo Board                    | 86    |
| PICMASTER <sup>®</sup> In-Circuit Emulator                | 85    |
| PICSTART <sup>®</sup> Plus Entry Level Development System | 85    |
| PIE1 Register                                             | 20    |
| Pin Functions                                             |       |
| MCLR/Vpp                                                  | 9     |
| OSC1/CLKIN                                                | 9     |
| OSC2/CLKOUT                                               | 9     |
| RA0/AN0                                                   | 9     |
| RA1/AN1                                                   | 9     |
|                                                           |       |

NOTES: