

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

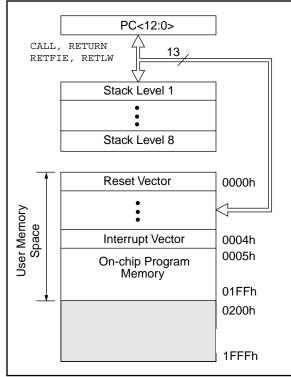
Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c710t-04-ss

Email: info@E-XFL.COM

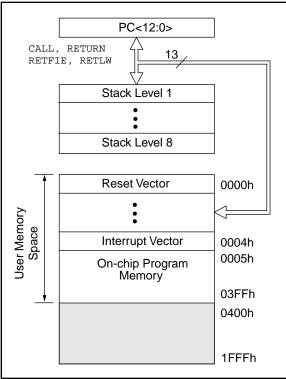
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization


The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C710	512 x 14	0000h-01FFh
PIC16C71	1K x 14	0000h-03FFh
PIC16C711	1K x 14	0000h-03FFh
PIC16C715	2K x 14	0000h-07FFh


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

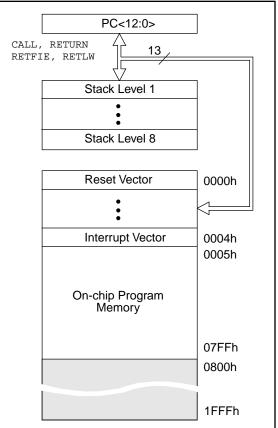

FIGURE 4-1: PIC16C710 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C71/711 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK

4.2.2.3 INTCON REGISTER

Applicable Devices 710 71 711 715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

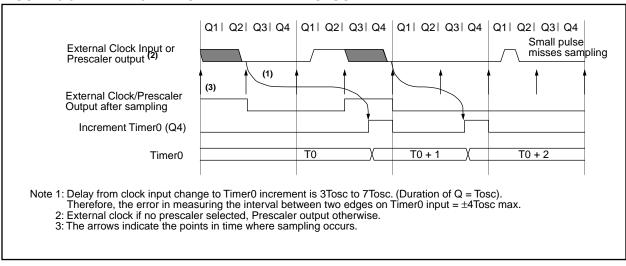
FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	R = Readable bit
bit7				-			bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:⁽¹⁾ GI 1 = Enabl 0 = Disab	es all un-r	nasked in					
bit 6:	ADIE: A/E 1 = Enabl 0 = Disab	es A/D int	errupt	t Enable b	bit			
bit 5:		es the TM	R0 interru		bit			
bit 4:	1 = Enabl	es the RB	0/INT exte	rupt Enab ernal interi ernal inter	rupt			
bit 3:	1 = Enabl	es the RB	port char	upt Enable nge interru nge interru	pt			
bit 2:	TOIF: TMF 1 = TMR0 0 = TMR0) register h	nas overflo	wed (mus	t be cleare	d in softwa	ire)	
bit 1:	1 = The R	B0/INT ex	cternal inte	rupt Flag b errupt occu errupt did i	urred (must	be cleare	d in softwar	e)
bit 0:	1 = At lea	st one of	the RB7:R		it nanged stat anged state		e cleared in	software)
Note 1:		-enabled l	oy the RET					ed, the GIE bit may be uninten- ce Routine. Refer to Section 8.5
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

TABLE 8-3:CERAMIC RESONATORS,
PIC16C710/711/715

Ranges Tested:				
Mode	Freq	OSC1	OSC2	
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF	
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF	
These values are for design guidance only. See notes at bottom of page.				
Resonator	Resonators Used:			
455 kHz Panasonic EFO-A455K04B ± 0.3%				
2.0 MHz	Murata Erie (Murata Erie CSA2.00MG ± 0.5%		
4.0 MHz	Murata Erie (CSA4.00MG	± 0.5%	
8.0 MHz	Murata Erie (CSA8.00MT	± 0.5%	
16.0 MHz	Murata Erie (CSA16.00MX	± 0.5%	
All reso	onators used did	d not have built-in	capacitors.	

TABLE 8-4:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR,
PIC16C710/711/715

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
These	values are	far daalam auida	nee entry Coo

These values are for design guidance only. See notes at bottom of page.

	Crystals Used	
32 kHz	Epson C-001R32.768K-A	± 20 PPM
200 kHz	STD XTL 200.000KHz	± 20 PPM
1 MHz	ECS ECS-10-13-1	\pm 50 PPM
4 MHz	ECS ECS-40-20-1	± 50 PPM
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM

Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.

2: Higher capacitance increases the stability of oscillator but also increases the start-up time.

3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

~					
No	l r (t	or the PIC16C71 an interrupt occurs while the Global Inter- upt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled y the user's Interrupt Service Routine (the ETFIE instruction). The events that yould cause this to occur are:			
	1	1. An instruction clears the GIE bit while an interrupt is acknowledged.			
	2	The program branches to the Interrupt vector and executes the Interrupt Service Routine.			
	3	. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.			
		Perform the following to ensure that inter- upts are globally disabled:			
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit			
		INTCON, GIE ; Global interrupt ; disabled?			
	GOTO	LOOP ; NO, try again			

:

Yes, continue

with program

flow

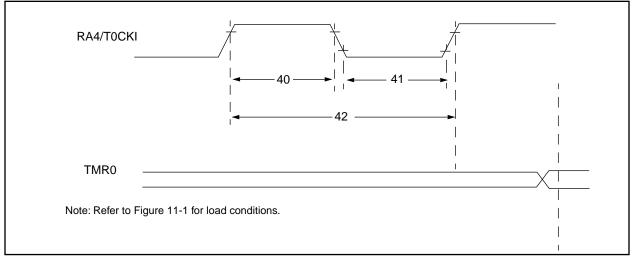
COMF	Complement f	DECFSZ	Decreme	ent f, Sk	ip if 0	
Syntax:	[label] COMF f,d	Syntax:	[label]	DECFS	Z f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27		
Operation:	$(\overline{f}) \rightarrow (dest)$	Operation:	(f) - 1 \rightarrow	(dest);	skip if re	sult = 0
Status Affected:	Z	Status Affected:	None			
Encoding:	00 1001 dfff ffff	Encoding:	00	1011	dfff	ffff
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction, is			aced in It is
Words: Cycles:	1 1		executed.	f the resul	t is 0, then a king it a 2T	a NOP is
Q Cycle Activity:	Q1 Q2 Q3 Q4	Words:	1			
	Decode Read Process Write to register data dest	Cycles:	1(2)			
	'f' data dest	Q Cycle Activity:	Q1	Q2	Q3	Q4
Example	COMF REG1,0		Decode	Read register 'f'	Process data	Write to dest
	Before Instruction REG1 = 0x13	If Skip:	(and Cur			
	After Instruction	li Skip.	(2nd Cyc Q1	Q2	Q3	Q4
	$\begin{array}{rcl} REG1 &=& 0x13\\ W &=& 0xEC \end{array}$		NOP	NOP	NOP	NOP
DECF	Decrement f	Example	HERE	DECF		, 1
Syntax:	[<i>label</i>] DECF f,d		GOTO LOOP CONTINUE • •			
Operands:	$0 \le f \le 127$ d \equiv [0,1]					
Operation:	(f) - 1 \rightarrow (dest)		Before Ir PC		ר dress here	
Status Affected:	Z		After Inst		UIC33 HERE	
Encoding:	00 0011 dfff ffff		CNT if CNT		IT - 1	
Decerintien	Decrement register 'f'. If 'd' is 0 the		PC if CN1	= ad	dress CON	TINUE
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC	= ad	dress heri	5+1
·	result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1			= ad	dress heri	5+1
Words:	'f'.			= ad	dress heri	5+1
Words: Cycles:	т. 1			= ad	dress heri	2+1
Words: Cycles:	Ψ. 1 1			= ad	dress heri	2+1
Words: Cycles: Q Cycle Activity:	 f. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to dest dest 			= ad	dress heri	5+1
Description: Words: Cycles: Q Cycle Activity: Example	 Process Process Decode Read register 'f' Process Write to data Write to dest 			= ad	dress heri	6+1

SLEEP

[label]	SLEEF)		
None				
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$				
TO, PD				
00	0000	0110	0011	
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped.			TO is pres- EEP ped.	
1				
1				
Q1	Q2	Q3	Q4	
Decode	NOP	NOP	Go to Sleep	
SLEEP				
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP	

SUBLW	Subtract	W from	Literal		
Syntax:	[label]	SUBL	N k		
Operands:	$0 \le k \le 255$				
Operation:	k - (W) \rightarrow	• (W)			
Status Affected:	C, DC, Z				
Encoding:	11	110x	kkkk kkkł		
Description:	ment meth	od) from	ubtracted (2's complet the eight bit literal 'k I in the W register.		
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3 Q4		
	Decode	Read literal 'k	Process Write to data		
Example 1:	SUBLW	0x02			
	Before In:	structior	ı		
		W = C = Z =	1 ? ?		
	After Inst	ruction			
		W = C = Z =	1 1; result is positive 0		
Example 2:	Before In:	structior	n		
		W = C = Z =	2 ? ?		
	After Inst	ruction			
		W = C = Z =	0 1; result is zero 1		
Example 3:	Before In	structior	ı		
Example 0.		W =	3		
Example 0.					
Example 0.		C = Z =	? ?		
	After Inst	Z =			
	After Inst	Z =			
	After Inst	Z = ruction	?		

SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(f) - (W) –	→ (dest)		
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2 ister from r stored in th result is sto	egister 'f'. I e W regist	f 'd' is 0 the er. If 'd' is 1	result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read	Process	Write to
		register 'f'	data	dest
Example 1:	SUBWF	reg1,1		
	Before Ins	struction		
	REG1	=	3	
	W C	=	2 ?	
	Z	=	?	
	After Instr	uction		
	REG1	=	1	
	W C	=	2 1; result is	positive
	Z	=	0	poolito
Example 2:	Before Ins	struction		
	REG1	=	2	
	W C	=	2 ?	
	Z	=	? ?	
	After Instr	uction		
	REG1	=	0	
	W	=	2	
	C Z	=	1; result is	zero
Example 3:	Eefore Ins	_		
	REG1	_	1	
	W	=	2	
	С	=	?	
	Z After Instr	=	?	
	REG1		0xFF	
	W	=	0xFF 2	
	c	=	0; result is	negative
	Z	=	0	

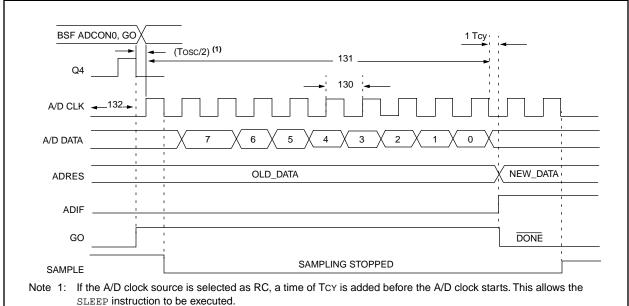

SWAPF	Swap Ni	bbles in	f					
Syntax:	[label] SWAPF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	0 ≤ f ≤ 127 d ∈ [0,1]						
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)							
Status Affected:	None							
Encoding:	00	1110	dfff	ffff				
Description:	ter 'f' are e result is pl	and lower exchanged aced in W is placed in	. If 'd' is 0 register. I	the f 'd' is 1				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to dest				
Example	SWAPF	REG,	0					
	Before In	struction						
	REG1 = 0xA							
	After Instruction							
		REG1 W	= 0x4 = 0x5					

TRIS	Load TRIS Register				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \le f \le 7$				
Operation:	(W) \rightarrow TRIS register f;				
Status Affected:	None				
Encoding:	00 0000 0110 0fff				
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

XORLW	Exclusi	ve OR Li	iteral wit	h W
Syntax:	[label]	XORL	V k	
Operands:	$0 \le k \le 2$	255		
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)	
Status Affected:	Z			
Encoding:	11	1010	kkkk	kkkk
Description:	XOR'ed v	ents of the vith the ei t is placed	ght bit lite	ral 'k'.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example:	XORLW	0xAF		
	Before I	nstructio	n	
		W =	0xB5	
	After Ins	truction		
		W =	0x1A	

XORWF	Exclusiv	e OR W	with f	
Syntax:	[label]	XORWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27		
Operation:	(W) .XOF	$R.\left(f\right)\to($	dest)	
Status Affected:	Z			
Encoding:	00	0110	dfff	ffff
Description:	Exclusive register wi result is st is 1 the res	th registe ored in th	r 'f'. If 'd' is e W regist	o the er. If 'd'
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example	XORWF	REG	1	
	Before In	struction	1	
		REG W	0/1	AF B5
	After Inst	ruction		
		REG W	0/1	1A B5

FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS


TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20*	—		ns	Must also meet
			With Prescaler	10*	—	_	ns	parameter 42
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	—	_	ns	Must also meet
			With Prescaler	10*	—	-	ns	parameter 42
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge to timer increment		2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF $\geq 3.0V$
			PIC16LC710/711	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16LC710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H time). (Note 1)		—	9.5	-	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock start			Tosc/2§		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_		TAD	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

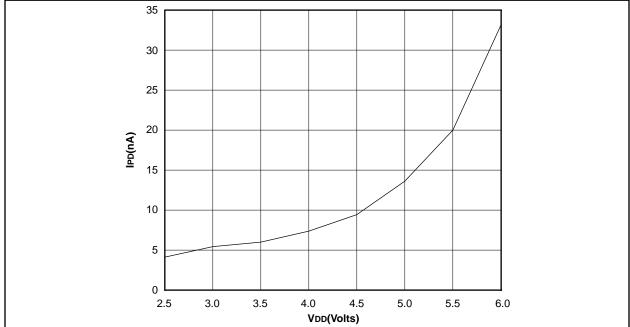
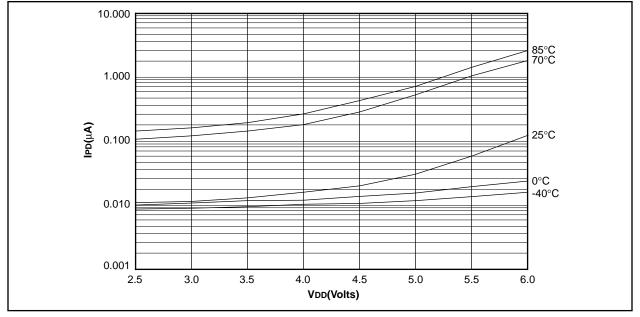



FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

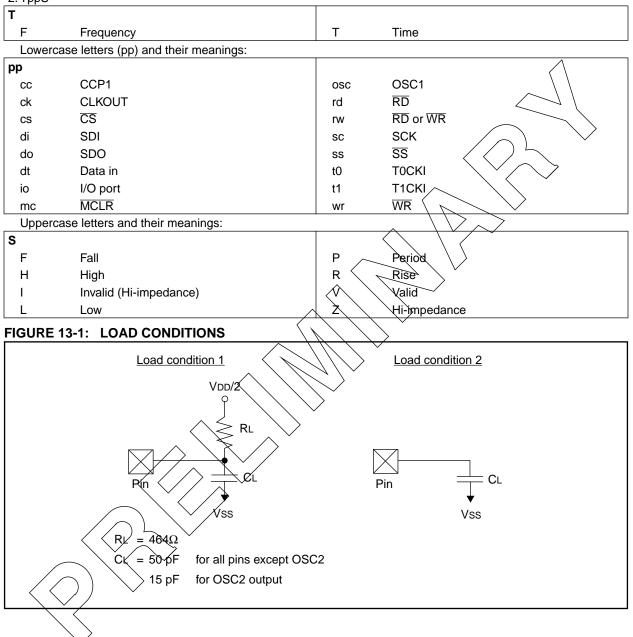
Applicable Devices 710 71 711 715

13.3 I	PIC16C71 PIC16C71 PIC16LC7	5-10 5-20 15-04	(Comme (Comme (Comme	rcia rcia ercia	il, Indus il, Indus il, Indus	strial, strial, strial))	
							nless otherwise stated) TA ≤ +70°C (commercial)
		Operati	ng tempe	alur	e 0°C -40°		TA \leq +85°C (industrial)
DC CHA	RACTERISTICS				-40°		$TA \le +125^{\circ}C$ (extended)
		Operati	na voltaa	e Vd			cribed in DC spec Section 13.1
			ction 13.2				
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.		-		t			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2VDD	v	$ $ \backslash \langle \checkmark
	(in RC mode)				0.2.000		
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	/v/	Note1
	Input High Voltage						\checkmark
	I/O ports	Vін		-	$\langle \setminus$		
D040	with TTL buffer		2.0	\sim	VDD	∕ v \	$4.5 \leq VDD \leq 5.5V$
D040A			0.8Vdd	$\langle \cdot \rangle$	VDD	\mathcal{N}	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8100		VBD	\sim	For entire VDD range
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD	\searrow	Vpp \	V	
D042A	OSC1 (XT, HS and LP)		0,7VQD	<u>\-</u> `	VDD	V	Note1
D043	OSC1 (in RC mode)	~	Q.9VDD			V	
D070	PORTB weak pull-up current	PURB	50	25,0	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)	\nearrow		\checkmark			
D060	I/O ports			-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI	$\langle \rangle$	· -	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1	\sim	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and L
	$ \land \land \land \land \land$	$\langle \rangle$					osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6		IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A	$(h) \rightarrow (h)$		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

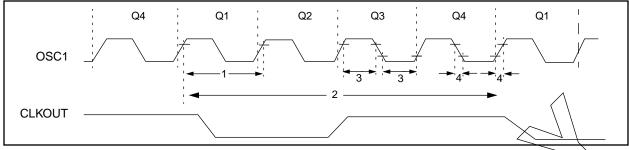
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as coming out of the pin.

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:


- 1. TppS2ppS
- 2. TppS

Applicable Devices71071711715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING

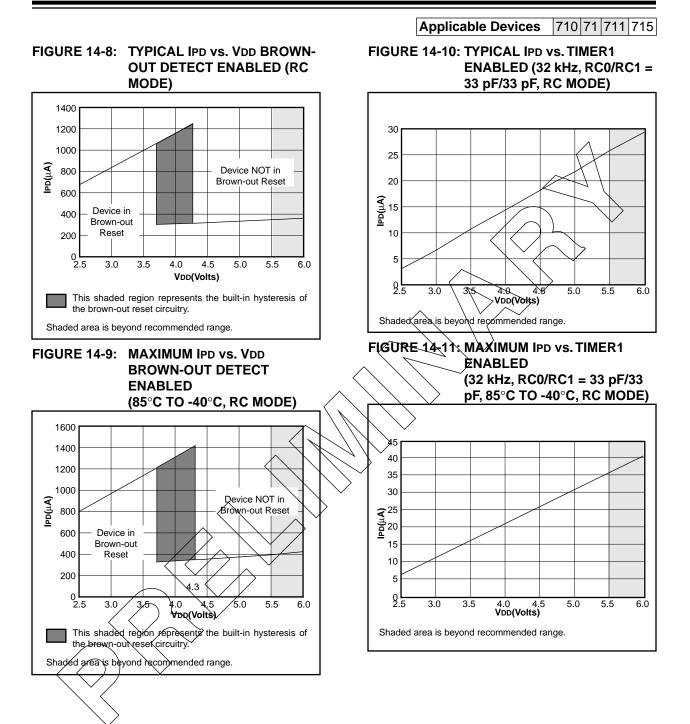
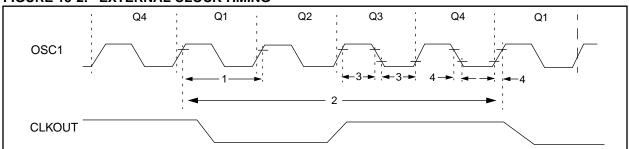


TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C715-04)
			DC	_	20/	MHz	HS osc mode (PIC16C715-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	1	MHz	RØ osc mode
		(Note 1)	0.1		<u> </u>	MHz	XT osc mode
			4	$ \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	$\wedge - \land$	10	MHz	HS osc mode (PIC16C715-10)
			4	\mathbb{P}	20	MHz	HS osc mode (PIC16C715-20)
			5	\overline{M}	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	$ \rightarrow $	_	ns	XT osc mode
		(Note 1)	250	Ň	-	ns	HS osc mode (PIC16C715-04)
			100	$ ^{\sim}-$	_	ns	HS osc mode (PIC16C715-10)
			50	_	—	ns	HS osc mode (PIC16C715-20)
			5	_	—	μs	LP osc mode
		Oscillator Períod	250	—	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C715-04)
	/		100	_	250	ns	HS osc mode (PIC16C715-10)
		$() \leftarrow \vee$	50	_	250	ns	HS osc mode (PIC16C715-20)
		\sim	5	-	-	μs	LP osc mode
2	Tgy	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosĻ,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
\setminus	TosH	or Low Time	2.5	—	—	μs	LP oscillator
\searrow	\langle		10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

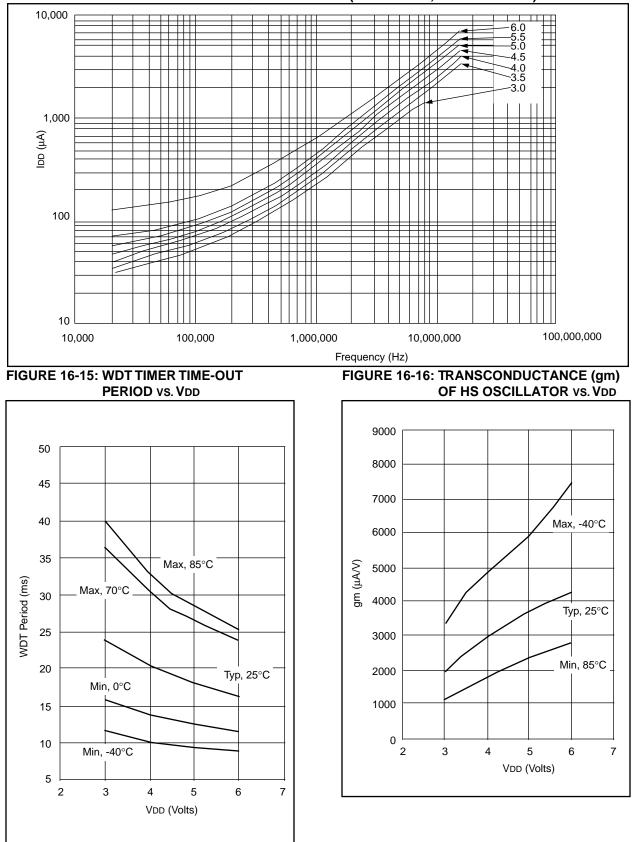

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

Applicable Devices 710 71 711 715

15.5 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING


TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			50	_	—	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	—	ns	XT oscillator
	TosH	osH Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	—	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15	_		ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	m: Name	
	Company	
A	Telephone: ()	FAX: ()
	blication (optional):	
Wou	uld you like a reply?YN	
Dev	vice: PIC16C71X Literatu	ire Number: DS30272A
Que	estions:	
1	What are the best features of this docum	pent?
1.	What are the best leatures of this docum	
2.	How does this document meet your hard	ware and software development needs?
	,	·
3.	Do you find the organization of this data	sheet easy to follow? If not, why?
4.	What additions to the data sheet do you	think would enhance the structure and subject?
5.	What deletions from the data sheet could	d be made without affecting the overall usefulness?
-		
6.	Is there any incorrect or misleading infor	mation (what and where)?
7		
7.	How would you improve this document?	
8	How would you improve our software, sy	stems, and silicon products?
0.	The model you improve our soluvale, sy	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02