

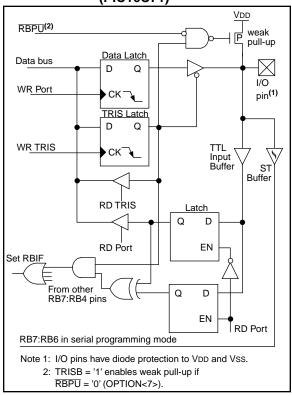
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

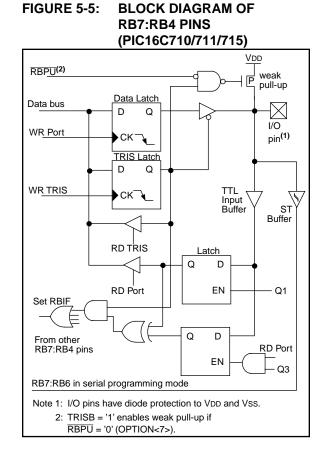
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	896B (512 x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	36 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c710t-20i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

7.4 <u>A/D Conversions</u>

Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). **Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 7-2: A/D CONVERSION

BSF	STATUS,	RP0	; Select Bank 1
CLRF	ADCON1		; Configure A/D inputs
BCF	STATUS,	RP0	; Select Bank 0
MOVL	W 0xCl		; RC Clock, A/D is on, Channel 0 is selected
MOVW	F ADCON0		;
BSF	INTCON,	ADIE	; Enable A/D Interrupt
BSF	INTCON,	GIE	; Enable all interrupts
Ensure	that the re	equired sa	ampling time for the selected input channel has elapsed.

Then the conversion may be started.

;

;;

;

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion.

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0 C	P0 CI	P0 CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		•										bit0	Address	2007h
bit 13-7 5-4: bit 6:	1 = Co 0 = All BODE 1 = BC	Code prote ode protec memory N: Brown OR enable OR disable	ction off is code -out Re ed	protec			Fh is w	vritable						
bit 3:	1 = PV	Ē: Power VRT disal VRT enat	bled	er Ena	ble bit	(1)								
bit 2:	1 = W	: Watchd DT enable DT disabl	ed	er Enab	le bit									
bit 1-0:	11 = F 10 = F 01 = X	1:FOSC0 RC oscilla IS oscillat (T oscillat P oscillat	tor tor tor	ator Se	lection	bits								
Note 1:	Ensur	e the Pow	er-up T	imer is	enable		ne Brov	vn-out l	Reset is	enable	d.		value of bit F	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13-8 5-4	4: 11 10 01	L = Up	de prot per hal per 3/4	ection f of pro th of p	off ogram rogran	memory	r code pr ry code p								
bit 7:	1	= Mem	ory Pa	rity Ch	ecking	or Enabl g is enat g is disal	oled								
bit 6:	1	oden : = Bor = Bor	enable	ed	Reset E	Enable b	_{it} (1)								
bit 3:	1	WRTE : = PWF = PWF	RT disa	bled	mer Ei	nable bit	(1)								
bit 2:	1	DTE: \ = WDT = WDT	enabl	ed	ner En	able bit									
bit 1-0	11 10 01	DSC1: L = RC D = HS L = XT D = LP	oscilla oscilla oscilla	ator itor tor	llator \$	Selectior	n bits								
Note 7							cally ena ed anytir		•		,	0	ess of the	value of bit	PWRTE.
	2: Al	l of the	CP1:0	CP0 pa	airs ha	ve to be	given the	e same	value	to enable	e the co	de prote	ection sch	eme listed.	

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

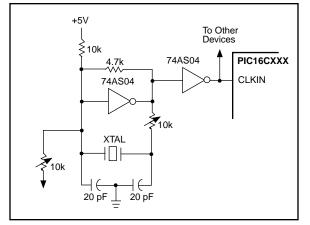
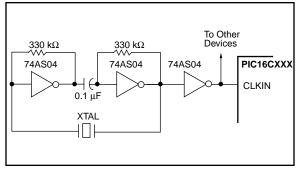
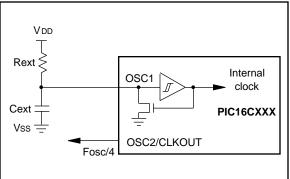



Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR


For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

Register	Power-on Reset, Brown-out Reset Parity Error Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1(2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu(1)
PIR1	-0	-0	_ _u _(1)
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PIE1	-0	-0	-u
PCON	वेर्वेवे	luu	luu
ADCON1	00	00	

TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-11 for reset value for specific condition.

9.1 Instruction Descriptions

		•	_	
ADDLW	Add Lite	ral and \	N	
Syntax:	[<i>label</i>] Al	DDLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conter added to the result is pla	ne eight b	it literal 'k'	and the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example:	After Inst	W =	0x10 0x25	
ADDWF	Add W a	nd f		
Syntax:	[<i>label</i>] Al	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	7		
Operation:	(W) + (f) -	ightarrow (dest)		
Status Affected:	C, DC, Z			
Encoding:	00	0111	dfff	ffff
Description:	Add the co with regist stored in th	er 'f'. If 'd'	is 0 the re	sult is

Encoding:	00	0111	dfff	ffff
Description:	Add the co with regist stored in th result is st	er 'f'. If 'd' he W regi	is 0 the re ster. If 'd' is	sult is s 1 the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to Dest
Example	ADDWF	FSR,	0	
	Before In			
		W = FSR =	0x17 0xC2	
	After Inst		0	
		W = FSR =	0xD9 0xC2	

ANDLW	AND Lite	eral with	w	
Syntax:	[<i>label</i>] A	NDLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .ANE	D. (k) \rightarrow (W)	
Status Affected:	Z			
Encoding:	11	1001	kkkk	kkkk
Description:	The conte AND'ed wiresult is pl	ith the eig	ht bit litera	'k'.The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal "k"	Process data	Write to W
Example	ANDLW	0x5F		
	Before In	struction	0xA3	
	After Inst	•• –	UXAU	
		= W	0x03	

ANDWF	AND W v	vith f		
Syntax:	[<i>label</i>] A	NDWF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7		
Operation:	(W) .ANE	D. (f) \rightarrow (c	dest)	
Status Affected:	Z			
Encoding:	00	0101	dfff	ffff
Description:	'd' is 0 the	result is a 'd' is 1 the	with regist stored in th e result is s	ie W
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to Dest
Example	ANDWF	FSR,	1	
	Before In			
	After Inst	W = FSR = ruction W = FSR =	0x17 0xC2 0x17 0x02	

COMF	Complement f	DECFSZ	Decreme	ent f, Sk	ip if 0	
Syntax:	[label] COMF f,d	Syntax:	[label]	DECFS	Z f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27		
Operation:	$(\overline{f}) \rightarrow (dest)$	Operation:	(f) - 1 $ ightarrow$	(dest);	skip if re	sult = 0
Status Affected:	Z	Status Affected:	None			
Encoding:	00 1001 dfff ffff	Encoding:	00	1011	dfff	ffff
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.	Description:	mented. If the W regin placed bac	'd' is 0 the ster. If 'd' i k in regist	ster 'f' are d result is pla s 1 the resu ter 'f'. next instruc	aced in It is
Words: Cycles:	1 1		executed.	f the resul	t is 0, then a king it a 2T	a NOP is
Q Cycle Activity:	Q1 Q2 Q3 Q4	Words:	1			
	Decode Read Process Write to register data dest	Cycles:	1(2)			
	'f' data dest	Q Cycle Activity:	Q1	Q2	Q3	Q4
Example	COMF REG1,0		Decode	Read register 'f'	Process data	Write to dest
	Before Instruction REG1 = 0x13	If Skip:	(and Cur			
	After Instruction	li Skip.	(2nd Cyc Q1	Q2	Q3	Q4
	$\begin{array}{rcl} REG1 &=& 0x13\\ W &=& 0xEC \end{array}$		NOP	NOP	NOP	NOP
DECF	Decrement f	Example	HERE	DECF		, 1
Syntax:	[<i>label</i>] DECF f,d		CONTIN	GOTC UE •	LOC	P
Operands:	$0 \le f \le 127$ d \equiv [0,1]			•		
Operation:	(f) - 1 \rightarrow (dest)		Before Ir PC		ר dress here	
Status Affected:	Z		After Inst		UIC33 HERE	
Encoding:	00 0011 dfff ffff		CNT if CNT		IT - 1	
Decerintien	Decrement register 'f'. If 'd' is 0 the		PC if CN1	= ad	dress CON	TINUE
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC	= ad	dress heri	5+1
·	result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1			= ad	dress heri	5+1
Words:	'f'.			= ad	dress heri	5+1
Words: Cycles:	т. 1			= ad	dress heri	2+1
Words: Cycles:	Ψ. 1 1			= ad	dress heri	2+1
Words: Cycles: Q Cycle Activity:	 f. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to dest dest 			= ad	dress heri	5+1
Description: Words: Cycles: Q Cycle Activity: Example	 Process Process Decode Read register 'f' Process Write to data Write to dest 			= ad	dress heri	6+1

10.0 DEVELOPMENT SUPPORT

10.1 <u>Development Tools</u>

The PICmicro[™] microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)

10.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

10.3 ICEPIC: Low-Cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

10.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

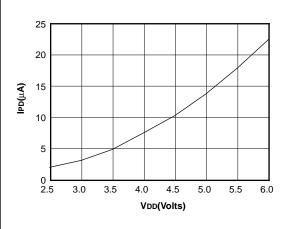
10.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

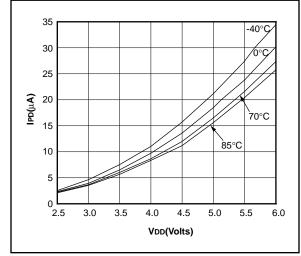
PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

		Standard Operating Conditions (unless otherwise stated)									
		Operati	ng temper	atur		, ≤ T	$A \leq +70^{\circ}C$ (commercial)				
			•		-40°0		A ≤ +85°C (industrial)				
DC CHAP	RACTERISTICS	-40°C \leq TA \leq +125°C (extended)									
		Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2.									
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions				
No.		- C.J		t	max	0					
	Output Low Voltage			-							
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С				
D090A			Vdd - 0.7	-	-	V	ІОН = -2.5 mA, VDD = 4.5V, -40°C to +125°C				
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С				
D092A			Vdd - 0.7	-	-	V	ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C				
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin				
	Capacitive Loading Specs on Output Pins										
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.				
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF					

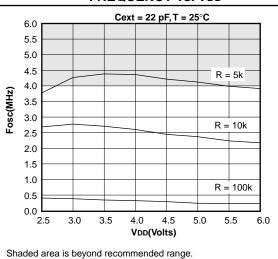
* These parameters are characterized but not tested.

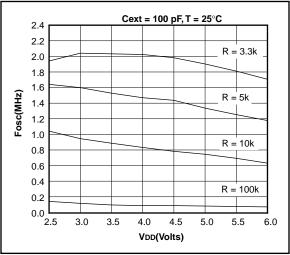

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

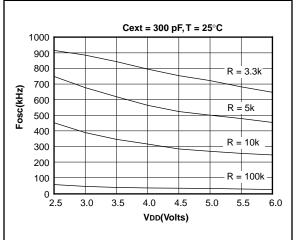
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

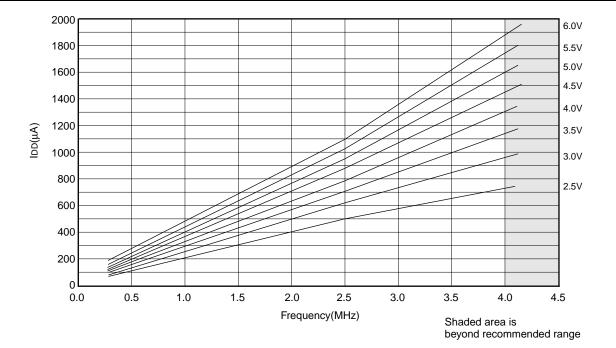

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.






FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD


FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

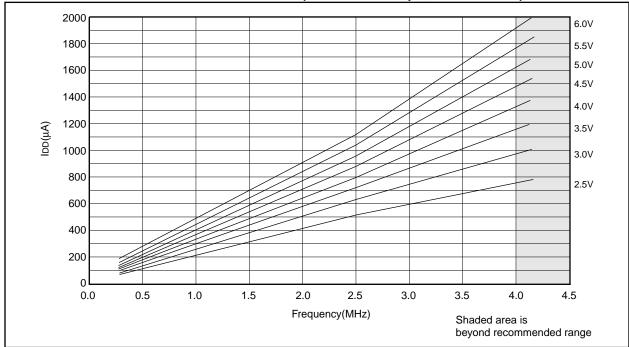


FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)

FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

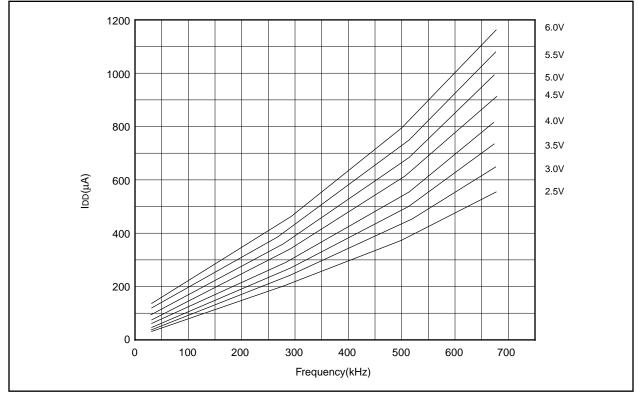
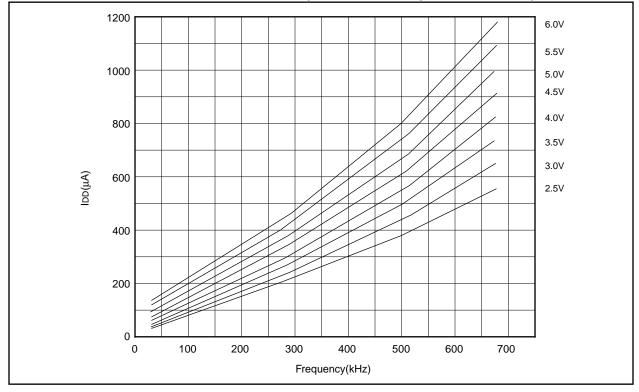
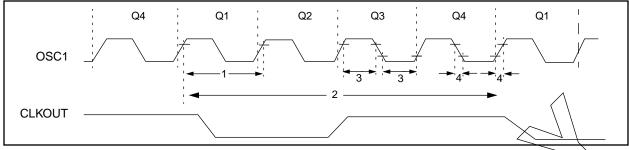



FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)



PIC16C71X

Applicable Devices71071711715

13.5 <u>Timing Diagrams and Specifications</u>

FIGURE 13-2: EXTERNAL CLOCK TIMING

TABLE 13-2: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fos	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C715-04)
			DC	_	20/	MHz	HS osc mode (PIC16C715-20)
			DC	_	200	kHz `	LP osc mode
		Oscillator Frequency	DC	—	1	MHz	RØ osc mode
		(Note 1)	0.1		<u> </u>	MHz	XT osc mode
			4	$ \langle \rangle$	4	MHz	HS osc mode (PIC16C715-04)
			4	$\wedge - \land$	10	MHz	HS osc mode (PIC16C715-10)
			4	$\langle \not F \rangle$	20	MHz	HS osc mode (PIC16C715-20)
			5	\overline{M}	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	$ \rightarrow $	_	ns	XT osc mode
		(Note 1)	250	Ň	-	ns	HS osc mode (PIC16C715-04)
			100	$ ^{\sim}-$	_	ns	HS osc mode (PIC16C715-10)
			50	_	—	ns	HS osc mode (PIC16C715-20)
			5	_	—	μs	LP osc mode
		Oscillator Períod	250	—	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C715-04)
	/	$\square \setminus \vee /$	100	—	250	ns	HS osc mode (PIC16C715-10)
		$\langle \rangle \leq \vee$	50	_	250	ns	HS osc mode (PIC16C715-20)
		\sim	5	_	_	μs	LP osc mode
2	TGY	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
\setminus	TosH	or Low Time	2.5	—	—	μs	LP oscillator
\searrow	\langle		10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C715.

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution	_	_	8-bits	_	$VREF=VDD,VSS\leqAin\leqVREF$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_	_	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	_	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle }$	<u></u> → A → A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	μA μA	During sampling All other times

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices71071711715

15.1 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial)

DC CH	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D020 D021 D021A	Power-down Current (Note 3)	IPD		7 1.0 1.0	28 14 16	μΑ μΑ μΑ	VDD = 4.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 4.0V, WDT disabled, -0° C to $+70^{\circ}$ C VDD = 4.0V, WDT disabled, -40° C to $+85^{\circ}$ C		

* These parameters are characterized but not tested.

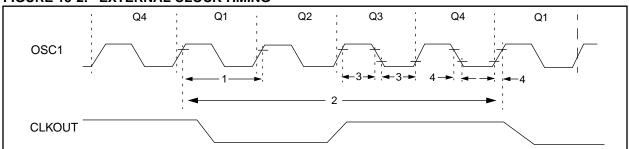
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.


The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

PIC16C71X

Applicable Devices 710 71 711 715

15.5 Timing Diagrams and Specifications

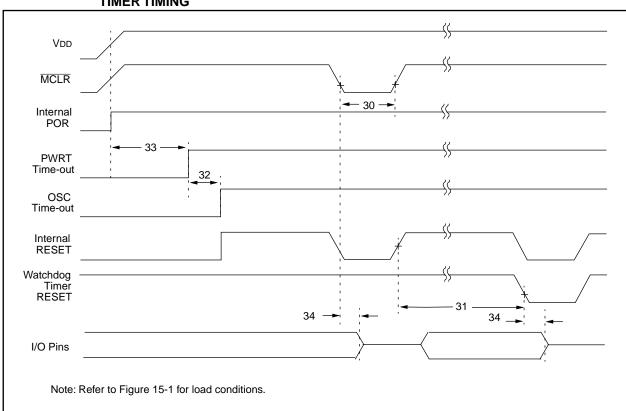

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			50	_	—	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	—	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15	_	_	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	—	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	-	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A:

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (1K now as opposed to 512 before) and register file (68 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- 9. Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet.

APPENDIX D: WHAT'S CHANGED

- 1. Minor changes, spelling and grammatical changes.
- 2. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V.
- 3. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.

NOTES: