

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input
RA1/AN1	bit1	TTL	Input/output or analog input
RA2/AN2	bit2	TTL	Input/output or analog input
RA3/AN3/VREF	bit3	TTL	Input/output or analog input/VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0
			Output is open drain type

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	_	—	—	RA4	RA3	RA2	RA1	RA0	x 0000	u 0000
85h	TRISA	_	_	—	PORTA Data Direction Register			1 1111	1 1111		
9Fh	ADCON1		—	—	—	_	—	PCFG1	PCFG0	00	00

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

Note:	For the PIC16C71
	if a change on the I/O pin should occur
	when the read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71)

TABLE 5-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

PIC16C71X

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

NOTES:

7.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 7-5. The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 7-1: A/D MINIMUM CHARGING TIME

 $\mathsf{VHOLD} = (\mathsf{VREF} - (\mathsf{VREF}/\mathsf{512})) \bullet (1 - e^{(\mathsf{-TCAP/CHOLD}(\mathsf{Ric} + \mathsf{Rss} + \mathsf{Rs}))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $TCAP = -(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $V\text{DD} = 5\text{V} \rightarrow \text{Rss} = 7 \text{ k}\Omega$

Temp (application system max.) = 50°C

 $\mathsf{VHOLD}=0 @ t=0$

FIGURE 7-5: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- Note 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- Note 4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED AQUISITION TIME

TACQ = Amplifier Settling Time +

Holding Capacitor Charging Time + Temperature Coefficient

- TACQ = $5 \,\mu s + TCAP + [(Temp 25^{\circ}C)(0.05 \,\mu s/^{\circ}C)]$
- TCAP = -CHOLD (RIC + RSS + RS) ln(1/511)
 - -51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020) -51.2 pF (18 kΩ) ln(0.0020) -0.921 μs (-6.2364)

5.747 μs

TACQ = 5 μs + 5.747 μs + [(50°C - 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	uuuu uuuu	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	นนนน นนนน	นนนน นนนน
PCL	0000h	0000h	PC + 1 (2)
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	นนนน นนนน	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	xxxx xxxx	<u>uuuu</u> uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu (1)
ADRES	XXXX XXXX	uuuu uuuu	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	Ou		uu
ADCON1	00	00	uu

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

NOTES:

PIC16C71X

Inclusive OR W with f								
[label]	IORWF	f,d						
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$								
(W) .OR. (f) \rightarrow (dest)								
Z								
00	0100	dfff	ffff					
Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.								
1								
1								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process data	Write to dest					
IORWF		RESULT,	0					
Before In	struction	1						
	= 0x13	3						
After Inst	ruction	- 0791						
	RESULT	= 0x13	3					
	W Z	= 0x93 = 1	3					
	Inclusive [label] $0 \le f \le 12$ $d \in [0,1]$ (W) .OR. \overline{Z} Inclusive C ter 'f'. If 'd' the W reginst placed base 1 1 Q1 Decode IORWF Before In After Inst	Inclusive OR Wy $[label]$ IORWF $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (de)$ \overline{Z} 00 0100Inclusive OR the Wter 'f'. If 'd' is 0 the rethe W register. If 'd'placed back in regist1Q1Q2DecodeReadregister'f'IORWFBefore InstructionRESULTWAfter InstructionRESULTW7	Inclusive OR W with f[label]IORWFf,d $0 \le f \le 127$ $d \in [0,1]$ (W) .OR. $(f) \rightarrow (dest)$ \overline{Z} 00 0100dfffInclusive OR the W register witter 'f'. If 'd' is 0 the result is platthe W register. If 'd' is 1 the result placed back in register 'f'.11Q1Q2Q3DecodeRead register 'f'IORWFRESULT ,Before Instruction RESULT = 0x13 W = 0x91After Instruction RESULT = 0x13 W = 0x93 Z = 1					

MOVLW	Move Literal to W							
Syntax:	[label]	MOVLW	/ k					
Operands:	$0 \le k \le 255$							
Operation:	$k\to(W)$	$k \rightarrow (W)$						
Status Affected:	None							
Encoding:	11	00xx	kkkk	kkkk				
Description:	The eight register. Th as 0's.	bit literal ' ne don't c	k' is loaded ares will as	d into W ssemble				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example	MOVLW After Inst	0x5A						
		VV =	0x5A					

MOVF	Move f						
Syntax:	[label] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$						
Operation:	(f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 1000 dfff ffff						
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1 Q2 Q3 Q4						
	Decode Read register 'f' Vrite to data dest						
Example	MOVF FSR, 0						
	After Instruction W = value in FSR register Z = 1						

MOVWF	Move W	to f					
Syntax:	[label]	MOVWI	F f				
Operands:	$0 \le f \le 12$	27					
Operation:	$(W) \rightarrow (f)$)					
Status Affected:	None						
Encoding:	00	0000	lfff	ffff			
Description:	Move data 'f'.	from W r	egister to	register			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	MOVWF	OPTIC	ON_REG				
	Before Instruction						
			= 0xFI	=			
	After Inst	ruction	- 0,41				
		OPTION	= 0x4F	=			
		W	= 0x4F	=			

RLF	Rotate Left f through Carry				RRF	Rotate Right f through Carry			
Syntax:	[label]	RLF	f,d		Syntax:	[<i>label</i>] RRF f,d			
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27			Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	See desc	cription b	elow		Operation:	See desc	ription b	elow	
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.			Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			rotated ⇒ Carry ced in sult is	
Words:	1]	Wordo	1			
Cycles:	1				vvolus.	1			
	1	00	00	<u> </u>	Cycles:	1	_	_	_
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest		Decode	Read register 'f'	Process data	Write to dest
Example	RLF	REG	G1,0		Example	RRF		REG1,0	
	Before In	structior	า			Before Instruction			
		REG1	= 111	0 0110			REG1	= 111	0 0110
		C	= 0				С	= 0	
	Alterinst		- 111	0 0110		Atter Inst	ruction		0 0110
		W	- 111 = 110	0 1100			REG1	= 111 - 011	U UIIU
		С	= 1				C	= 011	T OOTT

11.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

Т				
F	Frequency	Т	Time	
Lower	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKOUT	rd	RD	
cs	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	P	Period	
Н	High	R	Rise	
	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	

FIGURE 11-1: LOAD CONDITIONS

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
A01	Nr	Resolution	—	—	8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	Eabs	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A05	Efs	Full scale error	—	—	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	—	—	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	_	guaranteed		—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
A30	Zain	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			-	-	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

PIC16C71X

Applicable Devices 710 71 711 715

TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20*		_	ns	
			With Prescaler	10*	[—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	-	_	ns	
			With Prescaler	10*	-	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N	_	_	ns	N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge	to timer increment	2Tosc	—	7Tosc	—	

- * These parameters are characterized but not tested. \checkmark
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 14-1: RC OSCILLATOR FREQUENCIES

FIGURE 14-18: TYPICAL IDD vs.

Coxt	Port	Average				
CEXI	NEXI	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	±1,1%			
100 pF	3.3k	1.80 MHz	±1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 KHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz /	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			

The percentage variation-indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 14-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 14-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

15.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial)

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)OOperating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	15	32	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D020	Power-down Current	IPD	-	5	20	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3)		-	0.6	9	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$		
D021A			-	0.6	12	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applica	ble Devices 710 71 711 715							
15.3	DC Characteristics: PIC16C71 PIC16C71 PIC16LC7 PIC16LC7	-04 (0 -20 (0 1-04 (0	Commerc Commerc Commerc	cial, cial, cial,	Indust Indust Indust	rial) rial) rial)		
	Standard Operating Conditions (unless otherwise stated)							
		OOpera	ating temp	erat	ure 0°C	≤	$TA \leq +70^{\circ}C$ (commercial)	
DC CHA	RACTERISTICS	•		× /-	-40°	C _≤	$IA \leq +85^{\circ}C$ (industrial)	
		Operation operation	ng voltage	e vd	D range	as des	cribed in DC spec Section 15.1	
Daram	Characteristic		Min	Tvn	Max	Unite	Conditions	
No.	Gharacteristic	Sym		1 1	WIAN	Units	Conditions	
	Input Low Voltage							
	I/O ports	VIL						
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range	
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V		
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1	
	Input High Voltage							
	I/O ports (Note 4)	Vін		-				
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \le VDD \le 5.5V$	
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range	
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range	
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V		
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1	
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V		
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS	
	Input Leakage Current (Notes 2, 3)							
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance	
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$	
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	
	Output Low Voltage							
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C	
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C	
	Output High Voltage							
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С	
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С	
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin	
·			· · · ·					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	CKI High Pulse Width No Prescaler		-	_	ns	Must also meet
			With Prescaler	10	-	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	-	—	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	-	—	ns	N = prescale value
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N				(2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TO bit	
TOSE bit	
TRISA Register	
TRISB Register	
Two's Complement	7
U	

0	
Upward Compatibility	
UV Erasable Devices	

W

W Register	
ALU	7
Wake-up from SLEEP	
Watchdog Timer (WDT)	
WDT	
Block Diagram	
Programming Considerations .	65
Timeout	
WDT Period	
WDTE bit	
Z	

Z bit .		
Zero b	bit	7

LIST OF EXAMPLES

Example 3-1:	Instruction Pipeline Flow 10
Example 4-1:	Call of a Subroutine in Page 1 from
	Page 0 24
Example 4-2:	Indirect Addressing 24
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB27
Example 5-3:	Read-Modify-Write Instructions
	on an I/O Port 30
Example 6-1:	Changing Prescaler (Timer0→WDT) 35
Example 6-2:	Changing Prescaler (WDT→Timer0) 35
Equation 7-1:	A/D Minimum Charging Time 40
Example 7-1:	Calculating the Minimum Required
	Aquisition Time 40
Example 7-2:	A/D Conversion
Example 7-3:	4-bit vs. 8-bit Conversion Times 43
Example 8-1:	Saving STATUS and W Registers
	in RAM 64

LIST OF FIGURES

Figure 3-1:	PIC16C71X Block Diagram	8
Figure 3-2:	Clock/Instruction Cycle	10
Figure 4-1:	PIC16C710 Program Memory Map	
	and Stack	11
Figure 4-2:	PIC16C71/711 Program Memory Map	
-	and Stack	11
Figure 4-3:	PIC16C715 Program Memory Map	
	and Stack	11
Figure 4-4:	PIC16C710/71 Register File Map	12
Figure 4-5:	PIC16C711 Register File Map	13
Figure 4-6:	PIC16C715 Register File Map	13
Figure 4-7:	Status Register (Address 03h, 83h)	17
Figure 4-8:	OPTION Register (Address 81h, 181h)	18
Figure 4-9:	INTCON Register (Address 0Bh, 8Bh)	19
Figure 4-10:	PIE1 Register (Address 8Ch)	20
Figure 4-11:	PIR1 Register (Address 0Ch)	21
Figure 4-12:	PCON Register (Address 8Eh),	
	PIC16C710/711	22
Figure 4-13:	PCON Register (Address 8Eh),	
	PIC16C715	22
Figure 4-14:	Loading of PC In Different Situations	23
Figure 4-15:	Direct/Indirect Addressing	24
Figure 5-1:	Block Diagram of RA3:RA0 Pins	25
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	25
Figure 5-3:	Block Diagram of RB3:RB0 Pins	27
Figure 5-4:	Block Diagram of RB7:RB4 Pins	
	(PIC16C71)	28
Figure 5-5:	Block Diagram of RB7:RB4 Pins	
	(PIC16C710/711/715)	28
Figure 5-6:	Successive I/O Operation	30
Figure 6-1:	Timer0 Block Diagram	31
Figure 6-2:	Timer0 Timing: Internal Clock/	
	No Prescale	31
Figure 6-3:	Timer0 Timing: Internal Clock/	
	Prescale 1:2	32
Figure 6-4:	Timer0 Interrupt Timing	32
Figure 6-5:	Timer0 Timing with External Clock	33
Figure 6-6:	Block Diagram of the Timer0/	
	WDT Prescaler	34
Figure 7-1:	ADCON0 Register (Address 08h),	
	PIC16C710/71/711	37
Figure 7-2:	ADCON0 Register (Address 1Fh),	
	PIC16C715	38

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.