

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q	
MPEEN		—	—	—	PER	POR	BOR ⁽¹⁾	R = Readable bit
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	MPEEN: I Reflects t	Memory P he value c	arity Erron of configur	r Circuitry ation word	Status bit bit, MPEE	N		
bit 6-3:	Unimpler	nented: R	lead as '0					
bit 2:	PER: Memory Parity Error Reset Status bit 1 = No Error occurred 0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset)							
bit 1:	POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)							
bit 0:	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)							

PIC16C71X

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 6-4: TIMER0 INTERRUPT TIMING

7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

7.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

7.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

7.8 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

Note:	Care must be taken when using the RA0
	pin in A/D conversions due to its proximity
	to the OSC1 pin.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

|--|

ТО	PD	
1	1	Power-on Reset
0	x	Illegal, TO is set on POR
x	0	Illegal, PD is set on POR
0	1	WDT Reset
0	0	WDT Wake-up
u	u	MCLR Reset during normal operation
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 8-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C710/711

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 8-9: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C715

PER	POR	BOR	TO	PD	
1	0	x	1	1	Power-on Reset
x	0	x	0	x	Illegal, TO is set on POR
x	0	x	x	0	Illegal, PD is set on POR
1	1	0	x	x	Brown-out Reset
1	1	1	0	1	WDT Reset
1	1	1	0	0	WDT Wake-up
1	1	1	u	u	MCLR Reset during normal operation
1	1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	1	1	1	Parity Error Reset
0	0	x	x	x	Illegal, PER is set on POR
0	x	0	x	x	Illegal, PER is set on BOR

TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711

Condition	Program Counter	STATUS Register	PCON Register PIC16C710/711
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	սսս0 Օսսս	uu
Brown-out Reset (PIC16C710/711)	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 Ouuu	uuuu
WDT Reset	000h	0000 luuu	uuuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	uuu0
Parity Error Reset	000h	uuul Ouuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

No	te: F If C b R W	For the PIC16C71 If an interrupt occurs while the Global Inter- rupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:						
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.						
	2	 The program branches to the Interrupt vector and executes the Interrupt Ser- vice Routine. 						
	3	B. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.						
	F	Perform the following to ensure that inter- upts are globally disabled:						
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit						
	BTFSC	INTCON, GIE ; Global interrupt ; disabled?						
	GOTO	LOOP : NO try again						

:

Yes, continue

with program

flow

9.1 Instruction Descriptions

ADDLW	Add Lite	ral and \	N		
Syntax:	[<i>label</i>] Al	DDLW	k		
Operands:	$0 \le k \le 25$	55			
Operation:	(W) + k –	→ (W)			
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The conter added to the result is pla	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.			
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal 'k'	Process data	Write to W	
Example:	ADDLW	0x15			
	Before In	struction			
	After Inst	W =	0x10		
		W =	0x25		
		a al f			
			£ -1		
Syntax:			f,d		
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7			
Operation:	(W) + (f)	ightarrow (dest)			
Status Affected:	C, DC, Z				
Encoding:	00	0111	dfff	ffff	
Description:	Add the co with regist	Add the contents of the W register with register 'f'. If 'd' is 0 the result is			

Encoding:	00	0111	dfff	ffff	
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to Dest	
Example	ADDWF	FSR,	0		
	Before In	struction	1		
		W =	0x17		
		FSR =	0xC2		
	After Inst	ruction			
		VV =	UXD9		
		⊦SR =	0xC2		

ANDLW	AND Literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 2$	55			
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	11 1001 kkkk kkkk				
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal "k"	Process data	Write to W	
Example	ANDLW	0x5F			
	Before In	struction	0.10		
	After Inst	vv = ruction W =	0x03		

ANDWF	AND W with f			
Syntax:	[<i>label</i>] A	NDWF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$.7		
Operation:	(W) .ANE	D. (f) \rightarrow (o	dest)	
Status Affected:	Z			
Encoding:	00	0101	dfff	ffff
Description:	AND the V 'd' is 0 the register. If back in reg	V register result is s 'd' is 1 the gister 'f'.	with regist stored in th e result is s	ter 'f'. If ne W stored
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to Dest
Example	ANDWF	FSR,	1	
	Before In	struction	1	
		W =	0x17	
	After Inst	ruction	0.02	
		W =	0x17	
		FSR =	0x02	

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operation.			
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	NOP	NOP
Example	NOP			

RETFIE	Return from Interrupt			
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$TOS \rightarrow PC,$ 1 $\rightarrow GIE$			
Status Affected:	None			
Encoding:	00	0000	0000	1001
Description.	and Top of the PC. In ting Globa (INTCON- instruction	f Stack (To terrupts a I Interrupt <7>). This	OS) is load re enabled Enable bi is a two c	ded in I by set- it, GIE ycle
Words:	1			
Cycles:	2			
Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack
2nd Cycle	NOP	NOP	NOP	NOP
Example	RETFIE			

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister	
Syntax:	[label]	OPTION	٧	
Operands:	None			
Operation:	$(W) \rightarrow O$	PTION		
Status Affected:	None			
Encoding:	00	0000	0110	0010
Description: Words: Cycles: Example	The conter loaded in t instruction patibility w Since OPT register, th it. 1	nts of the he OPTIC is suppol ith PIC16 TION is a le user ca	W register DN registe rted for coo C5X produ readable/v n directly a	r are r. This de com- ucts. vritable address
	To mainta with futu not use t	ain upwa re PIC16 his instru	rd compa CXX production.	tibility ucts, do

SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 122 \\ d \in \ [0,1] \end{array}$	7		
Operation:	(f) - (W) –	→ (dest)		
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2 ister from r stored in th result is sto	's compler egister 'f'. I le W regist pred back i	nent metho f 'd' is 0 the er. If 'd' is 1 n register 'f	d) W reg- e result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example 1:	SUBWF	reg1,1		
	Before Ins	struction		
	REG1	=	3	
	VV C	=	2 ?	
	Z	=	?	
	After Instr	uction		
	REG1	=	1	
	C	=	∠ 1; result is	positive
	Z	=	0	•
Example 2:	Before Ins	struction		
	REG1	=	2	
	W C	=	2 ?	
	Z	=	?	
	After Instr	uction		
	REG1	=	0	
	W C	=	2 1: result is	zero
	Z	=	1	2010
Example 3:	Before Ins	struction		
	REG1	=	1	
	W C	=	2	
	Z	=	?	
	After Instr	uction		
	REG1	=	0xFF	
	W C	=	2 0: result is	negative
	7	_	0	

SWAPF	Swap Ni	bbles in	f			
Syntax:	[label]	[<i>label</i>] SWAPF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$					
Operation:	(f<3:0>) - (f<7:4>) -	→ (dest< $$ → (dest<	7:4>), 3:0>)			
Status Affected:	None					
Encoding:	00	1110	dfff	ffff		
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to dest		
Example	SWAPF	REG,	0			
	Before In	struction				
		REG1	= 0x	A5		
	After Inst	ruction				
		REG1 W	= 0x = 0x	A5 5A		

TRIS	Load TR	Load TRIS Register		
Syntax:	[<i>label</i>]	TRIS	f	
Operands:	$5 \leq f \leq 7$			
Operation:	(W) \rightarrow TRIS register f;			
Status Affected:	None			
Encoding:	00	0000	0110	Offf
Description:	The instru compatibil ucts. Since able and v address th	ction is su ity with th e TRIS reg vritable, th nem.	upported for e PIC16C gisters are ne user can	or code 5X prod- read- n directly
Words:	1			
Cycles:	1			
Example				
	To maint with futu not use t	ain upwa re PIC16 his instru	rd compa CXX prod uction.	tibility ucts, do

PIC16C71X

Applicable Devices 710 71 711 715

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into Vod pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(V	$VDD - VOH) \times IOH + \Sigma(VOI \times IOL)$

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C710-04 PIC16C711-04	PIC16C710-10 PIC16C711-10	PIC16C710-20 PIC16C711-20	PIC16LC710-04 PIC16LC711-04	PIC16C710/JW PIC16C711/JW
	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
RC	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
XT	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.			
	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at	IDD: 30 mA max. at	IDD: 30 mA max. at	Not up opposed and for	IDD: 30 mA max. at
HS	5.5V	5.5V	5.5V	Not recommended for	5.5V
	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V		IPD: 1.5 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 10 MHz max.	Freq:20 MHz max.		Freq: 10 MHz max.
	VDD: 4.0V to 6.0V			VDD: 2.5V to 6.0V	VDD: 2.5V to 6.0V
	IDD: 52.5 μA typ. at			IDD: 48 μA max.at	IDD: 48 μA max. at
	32 kHz, 4.0V	Not recommended for	Not recommended for	32 kHz, 3.0V	32 kHz, 3.0V
	IPD: 0.9 μA typ. at 4.0V	use in LP mode	use in LP mode	IPD: 5.0 μA max. at 3.0V	IPD: 5.0 μA max. at
	Freq: 200 kHz max.			Freq: 200 kHz max.	3.0V
					Freq: 200 kHz max.

TABLE 11-6:A/D CONVERTER CHARACTERISTICS:
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
A01	Nr	Resolution	—	—	8-bits	bit	$VREF=VDD,VSS\leqAIN\leqVREF$
A02	Eabs	Absolute error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A03	EIL	Integral linearity error	—	—	<±1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A04	Edl	Differential linearity error	_	_	< ± 1	LSb	$VREF=VDD,VSS\leqAIN\leqVREF$
A05	Efs	Full scale error	—	—	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A06	EOFF	Offset error	—	—	< ± 1	LSb	$VREF = VDD, VSS \le AIN \le VREF$
A10	—	Monotonicity	—	guaranteed		—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
A25	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
A30	Zain	Recommended impedance of analog voltage source		_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	180	_	μA	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1.
			-	-	10	μΑ	During A/D Conversion cycle

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 12-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 12-6: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Crystal Cap. Range Freq C1					
LP	32 kHz	32 kHz 33 pF					
	200 kHz	15 pF	15 pF				
XT	200 kHz	200 kHz 47-68 pF 47-68					
	1 MHz 15 pF		15 pF				
	4 MHz	15 pF	15 pF				
HS	HS 4 MHz 15 pF						
	8 MHz	15-33 pF	15-33 pF				
	20 MHz	15-33 pF	15-33 pF				
		•					
Crystals Used							
32 kHz	Epson C-00	± 20 PPM					
200 kHz	STD XTL 2	± 20 PPM					
1 MHz	ECS ECS-	± 50 PPM					
4 MHz	ECS ECS-4	± 50 PPM					
8 MHz	EPSON CA	± 30 PPM					
20 MHz	EPSON CA	± 30 PPM					

PIC16C71X

Applicable Devices 710 71 711 715

FIGURE 13-3: CLKOUT AND I/O TIMING

TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter	Sym	Characteristic	. <	Min	Typ†	Max	Units	Conditions
No.			$ \longrightarrow $	\searrow				
10*	TosH2ckL	OSC1↑ to CLKOUT↓		\searrow	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	$\langle \rangle \rangle$	<u> </u>	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	/ / / / /	V –	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	$\land \land $	—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valio	$\land \land \lor$		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	Т	0.25Tcy + 25	_	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	$\uparrow \swarrow$	0	—	—	ns	Note 1
17*	TosH2ioV	OSC11 (Q1) cycle) to		_	_	80 - 100	ns	
		Port out valid						
18*	TosH2iol	OSC1 (Q2 cycle) to		TBD	—	—	ns	
		Port input invalid (1/9 in hold time)						
19*	TioV20sH	Port input valid to OSC1↑ (I/O in setup time)		TBD	_	—	ns	
20*	TioR	Port output rise time	PIC16C715	—	10	25	ns	
	$ \setminus \vee$	\land	PIC16LC715		_	60	ns	
21*	Tior	Port output fall time	PIC16C715	—	10	25	ns	
	$\left[\right) \right]$		PIC16LC715	—	—	60	ns	
22	Tinp	INT pin high or low time		20	—	—	ns	
23††*	Trisp	RB7:RB4 change INT high or low time		20	—	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

FIGURE 15-3: CLKOUT AND I/O TIMING

TABLE 10 0. CERCOT AND 10 THINKS REGOLIERIENTS	TABLE 15-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--	-------------	---

Parameter	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
NO.								
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time			5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	b		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT \uparrow		0	_	—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	PIC16 C 71	100	—	_	ns	
		Port input invalid (I/O in hold time)	PIC16 LC 71	200	—	_	ns	
19*	TioV2osH	Port input valid to OSC11 ((I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 71		10	25	ns	
			PIC16 LC 71	—	—	60	ns	
21*	TioF	Port output fall time	PIC16 C 71	—	10	25	ns	
			PIC16 LC 71		_	60	ns	
22††*	Tinp	INT pin high or low time		20	—		ns	
23††*	Trbp	RB7:RB4 change INT high or low time		20	_	_	ns	

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.