

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	- ·
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.1 STATUS REGISTER

Applicable Devices 710 71 711 715

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

	R/W-0	R/W-0	<u>R-1</u>	<u>R-1</u>	R/W-x	R/W-x	R/W-x	
bit7	RP1	RP0	ТО	PD	Z	DC	C bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	IRP: Regi 1 = Bank 0 = Bank	ster Bank 2, 3 (100h 0, 1 (00h -	Select bit - 1FFh) FFh)	(used for	indirect ad	dressing)		
bit 6-5:	RP1:RP0 11 = Banl 10 = Banl 01 = Banl 00 = Banl Each ban	: Register < 3 (180h - < 2 (100h - < 1 (80h - I < 0 (00h - 7 k is 128 by	Bank Sel 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ect bits (u	sed for dire	ct address	ing)	
bit 4:	TO: Time- 1 = After 0 = A WD	-out bit power-up, T time-out	CLRWDT ir	nstruction,	or sleep ii	nstruction		
bit 3:	PD : Powe 1 = After 0 = By ex	er-down bit power-up o ecution of	or by the othe street	CLRWDT ins	struction			
bit 2:	Z: Zero bi 1 = The re 0 = The re	t esult of an esult of an	arithmetio arithmetio	c or logic o c or logic o	operation is	zero not zero		
bit 1:	DC: Digit 1 = A carr 0 = No ca	carry/borro ry-out from rry-out fro	ow bit (AD the 4th le m the 4th	DWF, ADDL Dw order b low order	w,SUBLW,S bit of the res bit of the re	UBWF instru Sult occurre Sult	uctions)(for ed	borrow the polarity is reversed)
bit 0:	C: Carry/I 1 = A carr 0 = No ca Note: For the secon bit of the	porrow bit ry-out from arry-out from borrow the od operand source reg	(ADDWF, A the most m the mo e polarity l. For rota ister.	DDLW, SUB t significar st significa is reverse te (RRF, RL	LW, SUBWF at bit of the ant bit of the d. A subtra F) instruction	instruction result occu result occu ction is ex ons, this bi	s) urred curred ecuted by a t is loaded	adding the two's complement of with either the high or low order

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13		—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplen	nented	: Read	as '1'										
bit 4:	CP0: Code 1 = Code 0 = All me	e prote protecti mory is	ction bi ion off 3 code p	t protecte	ed, but	00h - 3	Fh is w	vritable						
bit 3:	PWRTE: F 1 = Power 0 = Power	Power-u -up Tim -up Tim	up Time ner ena ner disa	er Enabl bled Ibled	e bit									
bit 2:	WDTE: Wa 1 = WDT e 0 = WDT e	atchdog enablec disablec	g Timer 1 d	Enable	e bit									
bit 1-0:	FOSC1:F0 11 = RC o 10 = HS o 01 = XT o 00 = LP o	OSC0: oscillato oscillato scillato scillato	Oscillat or or r r	tor Sele	ction b	its								

8.2 <u>Oscillator Configurations</u>

8.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).

FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:								
Mode	Freq OSC1 OSC2							
ХТ	455 kHz 2.0 MHz 4.0 MHz	455 kHz 47 - 100 pF 47 - 100 pF 2.0 MHz 15 - 68 pF 15 - 68 pF 4.0 MHz 15 - 68 pF 15 - 68 pF						
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF						
These values are for design guidance only. See notes at bottom of page.								
Resonators Used:								
455 kHz	Panasonic EF	D-A455K04B	± 0.3%					
2.0 MHz	Murata Erie CS	SA2.00MG	± 0.5%					
4.0 MHz	Murata Erie CS	Murata Erie CSA4.00MG ± 0.5%						
8.0 MHz	Murata Erie CS	SA8.00MT	± 0.5%					
16.0 MHz	Murata Erie CS	SA16.00MX	± 0.5%					
All reso	nators used did r	ot have built-in	capacitors.					

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2					
LP	32 kHz	33 - 68 pF	33 - 68 pF					
	200 kHz	15 - 47 pF	15 - 47 pF					
XT	100 kHz	47 - 100 pF	47 - 100 pF					
	500 kHz	20 - 68 pF	20 - 68 pF					
	1 MHz	15 - 68 pF	15 - 68 pF					
	2 MHz 15 - 47 pF 15 - 47 pF							
	4 MHz 15 - 33 pF 15 - 33 pF							
HS	8 MHz	15 - 47 pF	15 - 47 pF					
	20 MHz	15 - 47 pF	15 - 47 pF					
Th	These values are for design guidance only. See notes at bottom of page.							

8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

8.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 8-8: RC OSCILLATOR MODE

|--|

INTF flag (INTCON<1>)	// / 	(/ 	-\/ /	/\'\	
INT pin			1	1	1	
INTF flag (INTCON<1>)	I I	·		1 1	<u> </u>	
(IN I CON<1>)		· •	ı .			
	1		1	(Note 2)	1	
GIE bit (INTCON<7>)	 	Processor in	I I		1 	
(1	SLEEP	1	· ·	1	
NSTRUCTION FLOW	1		1	· · ·	1	
PC X PC	PC+1	-X PC+2	/ / <u>PC+2</u>	γ <u>PC + 2</u> γ	0004hX	0005h
fetched { Inst(PC) =	SLEEP Inst(PC + 1)	1	Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Δ. CLKOUT is not available in these osc modes, but shown here for timing reference.

8.9 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 **ID** Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

TABLE 9-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	Э	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						-	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

NOP	No Operation							
Syntax:	[label]	NOP						
Operands:	None							
Operation:	No opera	ition						
Status Affected:	None							
Encoding:	00	0000	0xx0	0000				
Description:	No operation.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	NOP	NOP	NOP				
Example	NOP							

RETFIE	Return f	rom Inte	rrupt				
Syntax:	[label]	RETFIE					
Operands:	None						
Operation:	$\begin{array}{l} TOS \to F \\ 1 \to GIE \end{array}$	PC,					
Status Affected:	None						
Encoding:	00	0000	0000	1001			
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	RETFIE						

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister				
Syntax:	[label]	OPTION	٧				
Operands:	None						
Operation:	$(W) \to OPTION$						
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description: Words: Cycles: Example	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. 1						
	To mainta with futu not use t	ain upwa re PIC16 his instru	rd compa CXX production.	tibility ucts, do			

SLEEP

Syntax:	[label]	SLEEF)					
Operands:	None							
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$							
Status Affected:	TO, PD							
Encoding:	00	0000	0110	0011				
Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 8.8 for more details							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	NOP	NOP	Go to Sleep				
Example:	SLEEP							

SUBLW	Subtract	W from	Literal	
Syntax:	[label]	SUBLV	V k	
Operands:	$0 \le k \le 25$	55		
Operation:	k - (W) \rightarrow	• (W)		
Status Affected:	C, DC, Z			
Encoding:	11	110x	kkkk	kkkk
Description:	The W reg ment meth The result	ister is sul lod) from t is placed	btracted (2's he eight bit in the W reg	s comple- literal 'k'. gister.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example 1:	SUBLW	0x02		
·	Before In	struction		
		W = C = Z =	1 ? ?	
	After Inst	ruction		
		W = C = Z =	1 1; result is 0	spositive
Example 2:	Before In:	struction		
		W = C = Z =	2 ? ?	
	After Inst	ruction		
		W = C = Z =	0 1; result i 1	s zero
Example 3:	Before In:	struction		
		W = C = Z =	3 ? ?	
	After Inst	ruction		
		W = C =	0xFF 0; result is	s nega-
		Z =	0	

Applicable Devices 710 71 711 715

11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on RA4 with respect to Vss	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into Vod pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(V	$VDD - VOH) \times IOH + \Sigma(VOI \times IOL)$

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C710-04 PIC16C711-04	PIC16C710-10 PIC16C710-20 PIC16C711-10 PIC16C711-20		PIC16LC710-04 PIC16LC711-04	PIC16C710/JW PIC16C711/JW
	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
RC	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq:4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq:4 MHz max.
	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 2.5V to 6.0V	VDD: 4.0V to 6.0V
хт	IDD: 5 mA max. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 2.7 mA typ. at 5.5V	IDD: 3.8 mA typ. at 3.0V	IDD: 5 mA max. at 5.5V
	IPD: 21 μA max. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 1.5 μA typ. at 4V	IPD: 5.0 μA typ. at 3V	IPD: 21 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at	IDD: 30 mA max. at	IDD: 30 mA max. at	Not as some as a deal for	IDD: 30 mA max. at
HS	5.5V	5.5V	5.5V		5.5V
	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V		IPD: 1.5 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 10 MHz max.	Freq:20 MHz max.		Freq: 10 MHz max.
	VDD: 4.0V to 6.0V			VDD: 2.5V to 6.0V	VDD: 2.5V to 6.0V
	IDD: 52.5 μA typ. at			IDD: 48 μA max. at	IDD: 48 μA max. at
	32 kHz, 4.0V	Not recommended for	Not recommended for	32 kHz, 3.0V	32 kHz, 3.0V
	IPD: 0.9 µA typ. at 4.0V	use in LP mode	use in LP mode	IPD: 5.0 μA max. at 3.0V	IPD: 5.0 μA max. at
	Freq: 200 kHz max.			Freq: 200 kHz max.	3.0V
					Freq: 200 kHz max.

TABLE 12-1: RC OSCILLATOR FREQUENCIES

Cevt	Rovt	Average				
UEAL	Next	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	±1.1%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 12-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 12-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 12-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
ХТ	200 kHz	47-68 pF	47-68 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15-33 pF	15-33 pF	
	20 MHz	15-33 pF	15-33 pF	
	1		•	
Crystals Used				
32 kHz	Epson C-00	± 20 PPM		
200 kHz	STD XTL 2	± 20 PPM		
1 MHz	ECS ECS-	± 50 PPM		
4 MHz	ECS ECS-4	± 50 PPM		
8 MHz	EPSON CA	EPSON CA-301 8.000M-C		
20 MHz	EPSON CA	± 30 PPM		

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	NR	Resolution			8-bits	_	$VREF = VDD, VSS \le AIN \le VREF$
	Nint	Integral error			less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_		less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NOFF	Offset error			less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	-	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	—	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	\sum
	Zain	Recommended impedance of analog voltage source	—	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180		PtA	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	mA μA	During sampling All other times

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typt \	Max	Units	Conditions
No.							
130	TAD	A/D clock period	1.6	$\langle // / \rangle$	× _	μs	$VREF \ge 3.0V$
			2.0			μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source		$\langle \rangle$			(RC oscillator source)
		$\langle \rangle$	3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time		9.5TAD	—	—	
		(not including S/H	\sim				
		time). Note [*] 1	12				
132	TACQ	Acquisition time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	_	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
		(No Prescaler)					
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	—	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR	—	—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

FIGURE 16-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25°C)

Data based on matrix samples. See first page of this section for details.

FIGURE 16-22: IOL VS. VOL, VDD = 5V

Figure 7-3:	ADCON1 Register, PIC16C710/71/711
0	(Address 88h)
	P[C16C715 (Address QEb) 38
Figure 7 4	A/D Block Diagram
	A/D BIOCK Diagram
Figure 7-5:	Analog Input Model 40
Figure 7-6:	A/D Transfer Function 45
Figure 7-7:	Flowchart of A/D Operation45
Figure 8-1:	Configuration Word for PIC16C71 47
Figure 8-2:	Configuration Word, PIC16C710/711 48
Figure 8-3	Configuration Word PIC16C715 48
Figure 8-4:	Crystal/Ceramic Resonator Operation
Figure 0-4.	
	(HS, XT of LP OSC Configuration)
Figure 8-5:	External Clock Input Operation
	(HS, XT or LP OSC Configuration)
Figure 8-6:	External Parallel Resonant Crystal
	Oscillator Circuit
Figure 8-7:	External Series Resonant Crystal
. iguie e . i	Oscillator Circuit 51
Figure 9 9:	PC Operilleter Mede
	RC Oscillator Mode
Figure 8-9:	Simplified Block Diagram of On-chip
	Reset Circuit
Figure 8-10:	Brown-out Situations 53
Figure 8-11:	Time-out Sequence on Power-up
0	(MCLR not Tied to VDD): Case 1
Figure 8-12	Time-out Sequence on Power-up
rigule 0-12.	(MCL D Net Tied Te)(DD); Case 2 50
	(IVICLE NOT THE TO VDD). Case 2
Figure 8-13:	Time-out Sequence on Power-up
	(MCLR Tied to VDD) 59
Figure 8-14:	External Power-on Reset Circuit
	(for Slow VDD Power-up)60
Figure 8-15:	External Brown-out Protection Circuit 1 60
Figure 8-16	External Brown-out Protection Circuit 2 60
Figure 9 17:	Interrupt Logic DIC16C710 71 711 62
Figure 6-17.	Interrupt Logic, PIC16C710, 71, 711
Figure 8-18:	Interrupt Logic, PIC16C71562
Figure 8-19:	INT Pin Interrupt Timing63
Figure 8-20:	Watchdog Timer Block Diagram 65
Figure 8-21:	Summary of Watchdog Timer Registers 65
Figure 8-22:	Wake-up from Sleep Through Interrupt 67
Figure 8-23	Typical In-Circuit Serial Programming
r igure o 20.	Connection 67
	Concercion Compared Format for Instructions
Figure 9-1	General Format for Instructions
Figure 11-1:	Load Conditions
Figure 11-2:	External Clock Timing95
Figure 11-3:	CLKOUT and I/O Timing
Figure 11-4:	Reset, Watchdog Timer, Oscillator
0	Start-up Timer and Power-up Timer
	Timing 97
Figure 11 Fr	Proven out Depot Timing
Figure 11-5.	Biown-out Reset Timing
Figure 11-6:	Timeru External Clock Timings
Figure 11-7:	A/D Conversion Timing 100
Figure 12-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode) 101
Figure 12-2:	Maximum IPD vs. VDD
	(WDT Disabled RC Mode) 101
Figuro 12 2	
Figure 12-5.	(MDT Frachlash DO Masta)
	(WDT Enabled, RC Mode) 102
Figure 12-4:	Maximum IPD vs. VDD
	(WDT Enabled, RC Mode) 102
Figure 12-5:	Typical RC Oscillator Frequency
-	vs. VDD
Figure 12-6	Typical RC Oscillator Frequency
	ve Von 402
Figure 12-7:	i ypical RC Oscillator Frequency
	vs. vdd
Figure 12-8:	I ypical IPD vs. VDD Brown-out Detect
	Enabled (RC Mode) 103

Figure 12-9:	Maximum IPD vs. VDD Brown-out Detect Enabled (85°C to -40°C, RC Mode)
Figure 12-10:	Typical IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
	RC Mode) 103
Figure 12-11:	Maximum IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 12-12	Typical IDD vs. Frequency
rigure 12-12.	(RC Mode @ 22 pF, 25° C)
Figure 12-13:	Maximum IDD vs. Frequency
0	(RC Mode @ 22 pF, -40°C to 85°C) 104
Figure 12-14:	Typical IDD vs. Frequency
	(RC Mode @ 100 pF, 25°C) 105
Figure 12-15:	Maximum IDD vs. Frequency
	(RC Mode @ 100 pF, -40°C to 85°C) 105
Figure 12-16.	(PC Mode @ $200 \text{ pE} = 25^{\circ}\text{C}$) 106
Figure 12-17:	Maximum IDD vs. Frequency
	(RC Mode @ 300 pF40°C to 85°C) 106
Figure 12-18:	Typical IDD vs. Capacitance
-	@ 500 kHz (RC Mode) 107
Figure 12-19:	Transconductance(gm) of
-	HS Oscillator vs. VDD 107
Figure 12-20:	Transconductance(gm) of
Eiguro 12 21	LP Oscillator VS. VDD 107
Figure 12-21.	Transconductance(gm) of XT Oscillator vs. Vpp 107
Figure 12-22:	Typical XTAL Startup Time vs.
ga.o	VDD (LP Mode, 25°C) 108
Figure 12-23:	Typical XTAL Startup Time vs.
	VDD (HS Mode, 25°C) 108
Figure 12-24:	Typical XTAL Startup Time vs.
-	VDD (XT Mode, 25°C) 108
Figure 12-25:	I ypical IDD vs. Frequency
Figure 12-26	(LP Mode, 25°C)
1 igure 12 20.	$(I P Mode, 85^{\circ}C \text{ to } -40^{\circ}C)$ 109
Figure 12-27:	Typical IDD vs. Frequency
0	(XT Mode, 25°C) 109
Figure 12-28:	Maximum IDD vs. Frequency
	(XT Mode, -40°C to 85°C) 109
Figure 12-29:	Typical IDD vs. Frequency
Figure 12 20	(HS Mode, 25°C) 110
Figure 12-30.	(HS Mode -40°C to 85°C) 110
Figure 13-1:	Load Conditions
Figure 13-2:	External Clock Timing 118
Figure 13-3:	CLKOUT and I/O Timing 119
Figure 13-4:	Reset, Watchdog Timer, Oscillator
	Start-Up Timer, and Power-Up Timer
F inance 40 F	Timing
Figure 13-5:	Brown-out Reset Timing
Figure 13-0.	A/D Conversion Timing 124
Figure 14-1:	Typical IPD vs. VDD
- gene	(WDT Disabled, RC Mode) 125
Figure 14-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode) 125
Figure 14-3:	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode) 126
Figure 14-4:	(WDT Enabled PC Mode)
Figure 14-5	Typical RC Oscillator Frequency vs
	VDD 126

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.futureone.com/pub/microchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe $^{\circledast}$ communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the **<Enter>** key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the **<Enter>** key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the **<Enter>** key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

970301

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.