

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	512	1K	1K	2K	2K	—
Memory	ROM Program Memory (14K words)	_	_	_	_	_	2K
	Data Memory (bytes)	36	36	68	128	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)		—	_		1	1
	Serial Port(s) (SPI/I ² C, USART)	_		_	_	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	—	—	_	—	—
	A/D Converter (8-bit) Channels	4	4	4	4	5	5
	Interrupt Sources	4	4	4	4	8	8
	I/O Pins	13	13	13	13	22	22
	Voltage Range (Volts)	2.5-6.0	3.0-6.0	2.5-6.0	2.5-5.5	2.5-6.0	3.0-5.5
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP

TABLE 1-1: PIC16C71X FAMILY OF DEVICES

		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	376	376
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

IADLL	4-2.	FICTOCI	13 SFLC			KL0131					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR, PER	Value on all other resets (3)
Bank 0				•	<u>.</u>	•	•				
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er					XXXX XXXX	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	ta Latch whe	n written: PC	RTA pins wh	nen read	x 0000	u 0000
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins w	hen read				XXXX XXXX	uuuu uuuu
07h	-	Unimpleme	nted							-	—
08h	-	Unimpleme	nted							-	—
09h	_	Unimpleme	nted		_					_	_
0Ah (1,2)	PCLATH	_	—	_	Write Buffe	r for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_					-0	-0
0Dh		Unimpleme	nted								_
0Eh		Unimpleme	nted							_	_
0Fh	-	Unimpleme	nted							_	_
10h		Unimpleme	nted								_
11h		Unimpleme	nted							_	_
12h	-	Unimpleme	nted							_	_
13h	-	Unimpleme	nted							-	—
14h		Unimpleme	nted							_	_
15h	-	Unimpleme	nted							_	_
16h	-	Unimpleme	nted							-	—
17h		Unimpleme	nted							_	_
18h	-	Unimpleme	nted							_	_
19h	-	Unimpleme	nted							-	—
1Ah	-	Unimpleme	nted							-	—
1Bh	_	Unimpleme	nted							-	_
1Ch	—	Unimpleme	nted							—	—
1Dh	—	Unimpleme	nted							_	—
1Eh	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0

TABLE 4-2: PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.

4.2.2.3 INTCON REGISTER

Applicable Devices 710 71 711 715

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R. – Roodoblo hit
bit7				KDIE			bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE:⁽¹⁾ GI 1 = Enabl 0 = Disab	lobal Inter es all un-r les all inte	rupt Enabl nasked int rrupts	e bit errupts				
bit 6:	ADIE: A/E 1 = Enabl 0 = Disab	D Converte les A/D int les A/D in	er Interrup errupt terrupt	t Enable b	bit			
bit 5:	TOIE: TM 1 = Enabl 0 = Disab	R0 Overflo les the TM les the TM	ow Interrup R0 interru 1R0 interru	ot Enable I pt upt	oit			
bit 4:	INTE: RB 1 = Enabl 0 = Disab	0/INT Exte les the RB les the RE	ernal Inter 0/INT exte 30/INT ext	rupt Enabl ernal interr ernal inter	le bit upt rupt			
bit 3:	RBIE: RB 1 = Enabl 0 = Disab	B Port Cha les the RB les the RB	nge Interr port char 3 port chai	upt Enable ige interru nge interru	e bit pt ıpt			
bit 2:	TOIF: TMI 1 = TMRC 0 = TMRC	R0 Overflo) register ł) register o	ow Interrup has overflo did not ove	ot Flag bit wed (mus erflow	t be cleare	d in softwa	re)	
bit 1:	INTF: RB 1 = The R 0 = The R	0/INT Exte 80/INT ex 80/INT ex	ernal Inter aternal inte aternal inte	rupt Flag b errupt occu errupt did r	oit urred (must not occur	be cleared	d in softwar	e)
bit 0:	RBIF: RB 1 = At lea 0 = None	Port Cha ist one of t of the RB	nge Interro he RB7:R 7:RB4 pin	upt Flag bi B4 pins ch s have cha	it nanged sta anged state	te (must be	e cleared in	software)
Note 1:	For the P tionally re for a deta	IC16C71, -enabled I iled descr	if an interr by the RET iption.	rupt occurs	s while the ction in the	GIE bit is t user's Inter	being cleare rrupt Servic	ed, the GIE bit may be uninten- e Routine. Refer to Section 8.5
Interru global enabli	upt flag bits I enable bit, ing an interr	get set whe GIE (INTC)	en an interru ON<7>). Us	pt condition er software	n occurs reg should ens	ardless of th ure the appr	e state of its opriate interr	corresponding enable bit or the rupt flag bits are clear prior to

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x5	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
BCF	pclath,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x9	900	
SUB1_P1	:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine
		;in page 0 (000h-7FFh)

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 4-15: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Applicable Devices 710 71 711 715

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit latch.

The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s).

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 5-1: INITIALIZING PORTA

FIGURE 5-1: BLOCK DIAGRAM OF RA3:RA0 PINS

FIGURE 5-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.

2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

7.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of:

2.0 µs for the PIC16C71

1.6 µs for all other PIC16C71X devices

Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

7.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 7-1: TAD VS. DEVICE OPERATING FREQUENCIES, PIC16C71

AD Cloci	k Source (TAD)		D	evice Frequenc	у	
Operation	ADCS1:ADCS0	20 MHz	16 MHz	4 MHz	1 MHz	333.33 kHz
2Tosc	00	100 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	6 μs
8Tosc	01	400 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 µs	24 μs ⁽³⁾
32Tosc	10	1.6 μs ⁽²⁾	2.0 μs	8.0 µs	32.0 μs ⁽³⁾	96 μs ⁽³⁾
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾	2 - 6 μs ⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.

5: For extended voltage devices (LC), please refer to Electrical Specifications section.

TABLE 7-2: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715

AD Clock S	ource (TAD)		Device F	requency	
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 $\mu s.$

2: These values violate the minimum required TAD time.

- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

RLF	Rotate L	eft f thre	ough Cai	ry	RRF	Rotate R	ight f th	rough C	arry
Syntax:	[label]	RLF	f,d		Syntax:	[label]	RRF f	d	
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]	27			Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	See desc	cription b	elow		Operation:	See desc	ription b	elow	
Status Affected:	С				Status Affected:	С			
Encoding:	00	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The conte one bit to t Flag. If 'd' the W regi stored bac	nts of reg the left th is 0 the re ster. If 'd' k in regis	ister 'f' are rough the esult is pla is 1 the re ster 'f'. Register f	rotated Carry ced in sult is	Description:	The conte one bit to Flag. If 'd' the W regi placed ba	nts of reg the right t is 0 the re ster. If 'd' ck in regis	ister 'f' are hrough the esult is pla is 1 the re ster 'f'. Register f	rotated ⇒ Carry ced in sult is
Words:	1]	Wordo	1			
Cycles:	1				vvolus.	1			
	1	00	00	<u> </u>	Cycles:	1	_	_	_
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest		Decode	Read register 'f'	Process data	Write to dest
Example	RLF	REG	G1,0		Example	RRF		REG1,0	
	Before In	structior	า			Before In	structior	n	
		REG1	= 111	0 0110			REG1	= 111	0 0110
		C	= 0				С	= 0	
	Alterinst		- 111	0 0110		Atter Inst	ruction		0 0110
		W	- 111 = 110	0 1100			REG1	= 111 - 011	U UIIU
		С	= 1				C	= 011	T OOTT

XORLW	Exclusiv	ve OR Li	iteral wit	h W
Syntax:	[label]	XORL	V k	
Operands:	$0 \le k \le 2$	255		
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)	
Status Affected:	Z			
Encoding:	11	1010	kkkk	kkkk
Description:	The conte XOR'ed v The resulter.	ents of the vith the ei t is placed	e W registe ght bit lite d in the W	ər are ral 'k'. regis-
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example:	XORLW	0xAF		
	Before II	nstructio	n	
		W =	0xB5	
	After Ins	truction		
		W =	0x1A	

XORWF	Exclusive OR W with f								
Syntax:	[<i>label</i>]	XORWF	f,d						
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]								
Operation:	(W) .XOF	$R.\left(f\right)\to($	dest)						
Status Affected:	Z								
Encoding:	00	0110	dfff	ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to dest					
Example	XORWF	REG	1						
	Before In	struction	1						
		REG W	= 0x = 0x	AF B5					
	After Inst	ruction							
		REG W	= 0x = 0x	1A B5					

Applicable Devices 710 71 711 715

FIGURE 12-23: TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

FIGURE 12-24: TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATORS

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
ХТ	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15-33 pF	15-33 pF		
	20 MHz	15-33 pF	15-33 pF		
	1		•		
Crystals Used					
32 kHz	Epson C-00	Epson C-001R32.768K-A			
200 kHz	STD XTL 2	± 20 PPM			
1 MHz	ECS ECS-	± 50 PPM			
4 MHz	ECS ECS-4	± 50 PPM			
8 MHz	EPSON CA	EPSON CA-301 8.000M-C			
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM		

FIGURE 12-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C)

Applicable Devices 710 71 711 715

FIGURE 12-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C)

FIGURE 12-28: MAXIMUM IDD vs. FREQUENCY (XT MODE, -40°C TO 85°C)

Applicable Devices71071711715

	Standard Operating Conditions (uplace otherwise stated)								
		Oporati	na tomno	ning		ulis (u	$T_{\rm A} < 170^{\circ}C$ (commercial)		
		Operati	ng tempe	latur	e UC	<u> </u>	$TA \leq +70 \text{ C}$ (commercial)		
DC CHAR	RACTERISTICS				-40		$TA \leq +85 C$ (industrial)		
		. .			-40	C _≤	$IA \leq +125 C$ (extended)		
		Operati	ng voltage	e VDI	D range	as des	cribed in DC spec Section 13.1		
		and Se	ction 13.2	•					
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Output High Voltage								
D090	I/O ports (Note 3)	Voн	VDD - 0.7	-	-	V	IOH = -3.0 mA. VDØ =\4.5V.		
			_				-40°C to +85°C		
			Vpp - 0 7		_	V	$10 = -25 \text{ m/s} \sqrt{108} + 15 \text{ V}$		
Boson			0.7			Ň	-10° C to $\pm 125^{\circ}$ C		
D000			V						
D092	OSC2/CLKOUT (RC osc coniig)		0.7	-	-	V	10H = -1.3 IIIA, VDD = 4.5V,		
							-40°C to +85°C		
D092A			VDD - 0.7] -	-		$IOP_{=} - 1.0 \text{ mA}, VDD_{=} 4.5V,$		
							-40°C to +(25°C		
	Capacitive Loading Specs on					\square			
	Output Pins					$ \setminus r$			
D100	OSC2 pin	Cosc ₂	-	-	15	Pr /	IPXT, HS and LP modes when		
					\wedge	' \	external clock is used to drive		
					$\langle \rangle$	$ \setminus $	0801		
D101	All I/O pips and OSC2 (in RC mode)	Cio			-50-	AF			
			· · ·	Ķ	-30-				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin:

Applicable Devices 710 71 711 715

FIGURE 13-3: CLKOUT AND I/O TIMING

TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter	Sym	Characteristic	. <	Min	Typ†	Max	Units	Conditions
No.			$ \longrightarrow $	\searrow				
10*	TosH2ckL	OSC1↑ to CLKOUT↓		\searrow	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	$\langle \rangle \rangle$	<u> </u>	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	/ / / / /	V –	5	15	ns	Note 1
13*	TckF	CLKOUT fall time	$\land \land $	—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valio	$\land \land \lor$		_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	Т	0.25Tcy + 25	_	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	0	—	—	ns	Note 1	
17*	TosH2ioV	OSC11 (Q1) cycle) to		—	—	80 - 100	ns	
		Port out valid						
18*	TosH2iol	OSC11 (Q2 cycle) to		TBD	—	—	ns	
		Port input invalid (1/9 in hol	d time)					
19*	TioV20sH	Port input valid to OSC11 (I/O in setup time)	TBD	_	—	ns	
20*	TioR	Port output rise time	PIC16C715	—	10	25	ns	
	$ \setminus \vee$	\frown	PIC16LC715		_	60	ns	
21*	Tiok	Port output fall time	PIC16C715		10	25	ns	
	$\left[\right) \right]$		PIC16LC715	—	—	60	ns	
22	Tinp	INT pin high or low time		20	—	—	ns	
23††*	Trisp	RB7:RB4 change INT high	or low time	20	—	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 710 71 711 715

TABLE 13-7: A/D CONVERTER CHARACTERISTICS: PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.	-						
	NR	Resolution	_	—	8-bits	_	$VREF = VDD, VSS \leq Ain \leq VREF$
	Nint	Integral error	_	_	less than ±1 LSb		$VREF = VDD, VSS \le Ain \le VREF$
	NDIF	Differential error	_	_	less than ±1 LSb	_	$VREF = VDD, VSS \le AIN \le VREF$
	NFS	Full scale error	_	—	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NOFF	Offset error	_	_	less than ±1 LSb	—	VREF = VDD, VS S ≤ AIN ≤ VREF
	—	Monotonicity	_	guaranteed	—	_	VSS & ANT & VREF
	VREF	Reference voltage	2.5V	—	Vdd + 0.3	V	$\langle \langle \rangle \rangle$
	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
	ZAIN	Recommended impedance of ana- log voltage source	_		10.0	KΩ	
	IAD	A/D conversion cur- rent (VDD)	_	90	\sim	μÀ	Average current consumption when AVD is on. (Note 1)
	IREF	VREF input current (Note 2)		- (The second secon	mA μA	During sampling All other times

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

Applicable Devices 710 71 711 715

15.5 Timing Diagrams and Specifications

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode
			1	—	20	MHz	HS osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	1,000	ns	HS osc mode (-04)
			50	—	1,000	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	—	ns	XT oscillator
	TosF	Fall Time	50	—	—	ns	LP oscillator
			15		—	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.

TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cave Dave		Average				
Cext	Rext	Fosc @	5V, 25°C			
20 pF	4.7k	4.52 MHz	±17.35%			
	10k	2.47 MHz	±10.10%			
	100k	290.86 kHz	±11.90%			
100 pF	3.3k	1.92 MHz	±9.43%			
	4.7k	1.49 MHz ±9.83%				
	10k	788.77 kHz ±10.92%				
	100k	88.11 kHz	±16.03%			
300 pF	3.3k	726.89 kHz	±10.97%			
	4.7k	573.95 kHz	±10.14%			
	10k	307.31 kHz ±10.43%				
	100k	33.82 kHz	±11.24%			

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

FIGURE 16-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

	Package Group: Plastic SSOP								
	Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	8°		0°	8°				
A	1.730	1.990		0.068	0.078				
A1	0.050	0.210		0.002	0.008				
В	0.250	0.380		0.010	0.015				
С	0.130	0.220		0.005	0.009				
D	7.070	7.330		0.278	0.289				
E	5.200	5.380		0.205	0.212				
е	0.650	0.650	Reference	0.026	0.026	Reference			
Н	7.650	7.900		0.301	0.311				
L	0.550	0.950		0.022	0.037				
N	20	20		20	20				
CP	-	0.102		-	0.004				

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

- 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
- 3: This outline conforms to JEDEC MS-026.

PIC16C71X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.