

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	· .
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	General Description	
2.0	PIC16C71X Device Varieties	5
3.0	Architectural Overview	
4.0	Memory Organization	. 11
5.0	I/O Ports	. 25
6.0	Timer0 Module	. 31
7.0	Analog-to-Digital Converter (A/D) Module	. 37
8.0	Special Features of the CPU	. 47
9.0	Instruction Set Summary	. 69
10.0	Development Support	. 85
11.0	Electrical Characteristics for PIC16C710 and PIC16C711	
12.0	DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711	101
13.0	Electrical Characteristics for PIC16C715	
14.0	DC and AC Characteristics Graphs and Tables for PIC16C715	
15.0	Electrical Characteristics for PIC16C71	135
16.0	DC and AC Characteristics Graphs and Tables for PIC16C71	147
17.0	Packaging Information	155
Appen	dix A:	161
	dix B: Compatibility	
Appen	dix C: What's New	162
	dix D: What's Changed	
	-	
PIC16	C71X Product Identification System	173
	·	

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

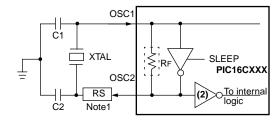
The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13	- -	—	—	—	_	_	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpler	nented	: Read	as '1'										
bit 4:	CP0: Cod 1 = Code 0 = All me	protect	ion off		ed, but	00h - 3	Fh is w	/ritable						
bit 3:	PWRTE: 1 = Power 0 = Power	-up Tin	ner ena	bled	le bit									
bit 2:	WDTE: W 1 = WDT 0 = WDT	enabled	ł	Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC c 10 = HS c 01 = XT c 00 = LP o	oscillato oscillato oscillato	or r	tor Sele	ection b	vits								

8.2 <u>Oscillator Configurations</u>

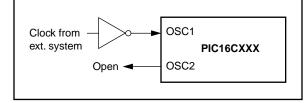
8.2.1 OSCILLATOR TYPES


The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

8.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5).


FIGURE 8-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 8-1 and Table 8-1 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: The buffer is on the OSC2 pin.

FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 8-1: CERAMIC RESONATORS, PIC16C71

Ranges Tested:									
Mode	Freq	OSC2							
ХТ	455 kHz 2.0 MHz 4.0 MHz	47 - 100 pF 15 - 68 pF 15 - 68 pF							
HS	8.0 MHz 16.0 MHz	15 - 68 pF 10 - 47 pF							
	se values are for es at bottom of page		nce only. See						
Resonator	s Used:								
455 kHz	Panasonic EF	D-A455K04B	± 0.3%						
2.0 MHz	Murata Erie CS	SA2.00MG	± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%								
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%								
16.0 MHz Murata Erie CSA16.00MX ± 0.5%									
All resonators used did not have built-in capacitors.									

TABLE 8-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71

Mode	Freq	OSC1	OSC2					
LP	32 kHz	33 - 68 pF	33 - 68 pF					
	200 kHz	15 - 47 pF	15 - 47 pF					
XT	100 kHz	47 - 100 pF	47 - 100 pF					
	500 kHz	20 - 68 pF	20 - 68 pF					
	1 MHz	15 - 68 pF	15 - 68 pF					
	2 MHz	15 - 47 pF	15 - 47 pF					
	4 MHz	15 - 33 pF	15 - 33 pF					
HS	8 MHz	15 - 47 pF	15 - 47 pF					
	20 MHz	15 - 47 pF	15 - 47 pF					
These values are for design guidance only. See notes at bottom of page.								

8.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 8.8 for details on SLEEP mode.

8.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TOIE (INTCON<5>). (Section 6.0)

8.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

For the PIC16C71 Note: if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /					
CLKOUT ③	(4)			/	
INT pin		1	1 1 1 1		1 1 1 1 1 1 1 1
INTF flag (INTCON<1>)			Interrupt Latency (2)		
GIE bit (INTCON<7>)					
INSTRUCTION	FLOW		, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
PC	PC	PC+1	PC+1	X 0004h	X 0005h
Instruction (fetched	Inst (PC)	Inst (PC+1)	_	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

FIGURE 8-19: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available only in RC oscillator mode. 4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

NOTES:

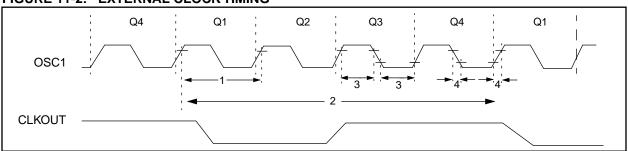
PIC16C71X

GOTO	Uncondi	tional B	ranch					
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 20$	047						
Operation:	$k \rightarrow PC < PCLATH$		PC<12:1	1>				
Status Affected:	None							
Encoding:	10	1kkk	kkkk	kkkk				
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.							
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC				
2nd Cycle	NOP	NOP	NOP	NOP				
Example	GOTO TI After Inst		Address	THERE				

INCF	Increment f	
Syntax:	[label] INCF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	
Operation:	(f) + 1 \rightarrow (dest)	
Status Affected:	Z	
Encoding:	00 1010 dfff	ffff
Description:	The contents of register 'f' a mented. If 'd' is 0 the result in the W register. If 'd' is 1 th placed back in register 'f'.	is placed
Words:	1	
Cycles:	1	
Q Cycle Activity:	Q1 Q2 Q3	Q4
	Decode Read register data	Write to dest
Example	INCF CNT, 1	
	Before Instruction CNT = 0 Z = 0	٢F
	After Instruction	
	$\begin{array}{rcl} CNT &=& 0;\\ Z &=& 1 \end{array}$	<00

		Standa	rd Operat	ting	Conditio	ons (un	less otherwise stated)				
		Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)									
			•		-40°0		A ≤ +85°C (industrial)				
DC CHAP	RACTERISTICS	-40°C \leq TA \leq +125°C (extended)									
		Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2.									
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions				
No.		- C.J		t	max	0					
	Output Low Voltage			-							
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C				
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C				
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С				
D092A			Vdd - 0.7	-	-	V	ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C				
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin				
	Capacitive Loading Specs on Output Pins										
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.				
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF					

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

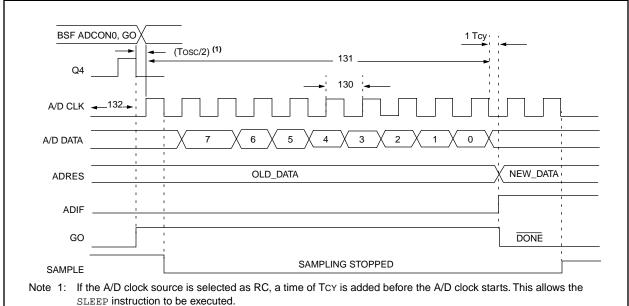
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

11.5 Timing Diagrams and Specifications

FIGURE 11-2: EXTERNAL CLOCK TIMING


TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC —		10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4 5	—	20 200	MHz kHz	HS osc mode LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT osc mode
		(Note 1)	250	—	_	ns	HS osc mode (-04)
			100	—	_	ns	HS osc mode (-10)
			50	—	_	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100 50	_	250 250	ns ns	HS osc mode (-10) HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_		ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	—	50	ns	LP oscillator
			_		15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.

FIGURE 11-7: A/D CONVERSION TIMING

TABLE 11-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16 C 710/711	1.6	_	_	μs	Tosc based, VREF $\geq 3.0V$
			PIC16LC710/711	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 710/711	2.0*	4.0	6.0	μs	A/D RC mode
			PIC16LC710/711	3.0*	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H time). (Note 1)		—	9.5	-	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to AD clock sta	art		Tosc/2§		_	If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from co	nvert \rightarrow sample time	1.5§	_		TAD	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.

OSC		PIC16C715-04	, ,	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	/.	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	ot use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do no	ot use in LP mode	// /	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

Applicable Devices 710 71 711 715

13.3 I	PIC16C71 PIC16C71 PIC16LC7	5-10 5-20 15-04	(Comme (Comme (Comme	rcia rcia ercia	il, Indus il, Indus il, Indus	strial, strial, strial))	
							nless otherwise stated) TA \leq +70°C (commercial)
		Operati	ng tempe	alur	e 0°C -40°		TA \leq +85°C (industrial)
DC CHAI	RACTERISTICS				-40°		$TA \le +125^{\circ}C$ (extended)
		Operati	ng voltage	e Vd			cribed in DC spec Section 13.1
		and Se	ction 13.2	•	Ū		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	$ \setminus \lor \land >$
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2Vdd	V	
	(in RC mode)						$\langle \rangle$
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	/v/	Note1
	Input High Voltage				\land		
	I/O ports	Vih		-	$\langle \rangle$		
D040	with TTL buffer		2.0	f	VDD	<u>v</u> '	$4.5 \le VDD \le 5.5V$
D040A			0.8VDD	7	VDD	· v>	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8V0D	`	Vøp	$\neg \forall$	For entire VDD range
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD	À	Vqd>	V	
D042A	OSC1 (XT, HS and LP)		0,7700	-	VDY	V	Note1
D043	OSC1 (in RC mode)		Q.9,400	-	∕∛ DD	V	
D070	PORTB weak pull-up current	PURB	50	250	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)		\bigvee \bigwedge	\sim			
D060	I/O ports			-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI	$\langle \rangle$	-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1	\wedge	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and L osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A	$(h) \rightarrow (h)$		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

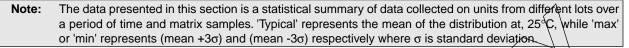
3: Negative current is defined as coming out of the pin.

TABLE 13-6:A/D CONVERTER CHARACTERISTICS:
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)

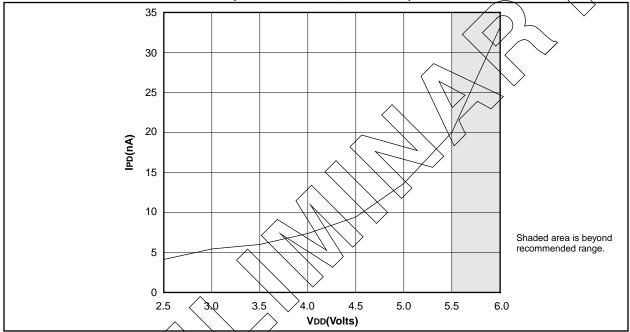
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Nr	Resolution	_	_	8-bits	_	$VREF=VDD,VSS\leqAin\leqVREF$
	Nint	Integral error	_	_	less than ±1 LSb	—	$VREF = VDD, VSS \le AIN \le VREF$
	Ndif	Differential error	_	_	less than ±1 LSb	—	VREF = VDD, VSS ≤ AIN ≤ VREF
	NFS	Full scale error	_		less than ±1 LSb	_	VREF = VDD, VSS ≤ AIN ≤ VREF
	Noff	Offset error	_	_	less than ±1 LSb	—	VREF = VDØ, VSS ≤ AIN ≤ VREF
	_	Monotonicity	_	guaranteed	_	_	VSS S AIN S VREF
	Vref	Reference voltage	2.5V	_	Vdd + 0.3	V	
	VAIN	Analog input voltage	Vss - 0.3		Vref + 0.3	V	
	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
	IAD	A/D conversion cur- rent (VDD)	_	180	$\overline{\langle }$	<u></u> → A → A	Average current consumption when A/D is on. (Note 1)
	IREF	VREF input current (Note 2)	_		1	μA μA	During sampling All other times

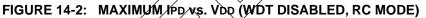
* These parameters are characterized but not tested.

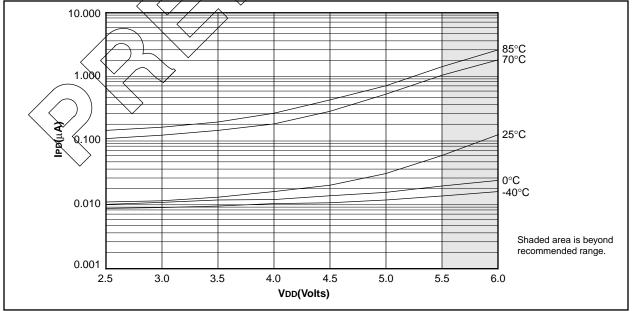
+ Data in "Typ" column is at 5V, 25°C unless otherwise stated These parameters are for design guidance only and are not tested.

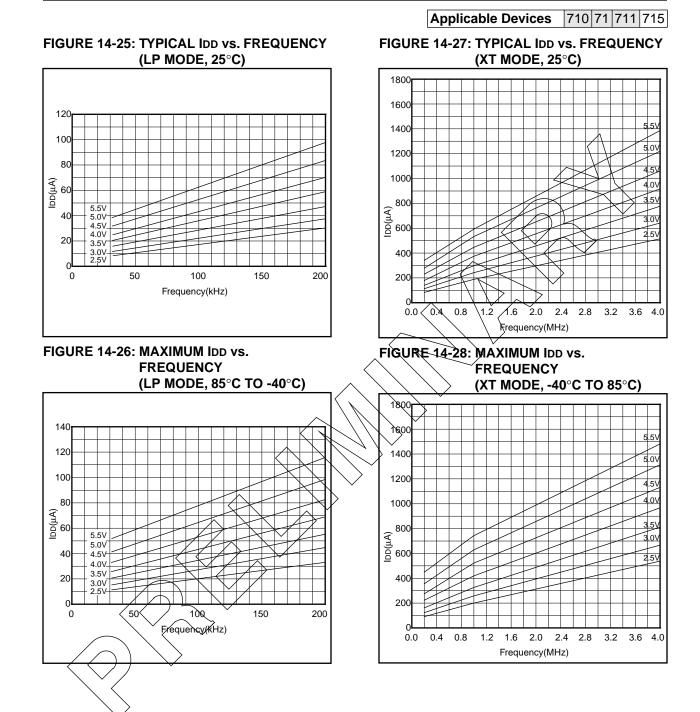

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.


14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715


The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.


In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.



$\ensuremath{\textcircled{}^{\odot}}$ 1997 Microchip Technology Inc.

Applica	Applicable Devices 710 71 711 715								
15.3 [DC Characteristics: PIC16C71 PIC16C71 PIC16C71 PIC16LC7	-20 (0 1-04 (0	Commero Commero	cial, cial,	Indust Indust	rial) rial)			
Standard Operating Conditions (unless otherwise stated)									
		OOpera	ating temp	erat			$TA \leq +70^{\circ}C$ (commercial)		
DC CHAP	RACTERISTICS	Oporati			-40°	-	TA \leq +85°C (industrial) cribed in DC spec Section 15.1		
			ction 15.2		Diange	as uesi	chibed in DC spec Section 15.1		
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				t					
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15V	V	For entire VDD range		
D031	with Schmitt Trigger buffer		Vss	-	0.8V	V	$4.5 \leq VDD \leq 5.5V$		
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports (Note 4)	Vih		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5 \leq VDD \leq 5.5V$		
D040A			0.25VDD + 0.8V	-	Vdd		For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd		For entire VDD range		
D042	MCLR, RB0/INT		0.85Vdd	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	†400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3mA, VDD = 4.5V, -40°С to +85°С		
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
+ [Data in "Typ" column is at 5V, 25°C unl	ooo oth	nuico oto	tod	Those n	oromo			

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

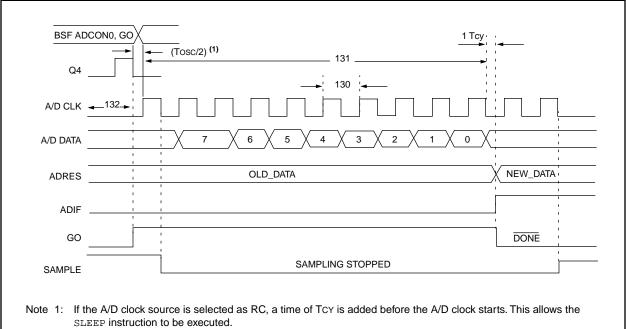
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 2: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Characteristic	Sym	Min	Typ +	Мах	Units	Conditions	
NO.	Capacitive Loading Specs on Output Pins			1				
D100	OSC2 pin	Cosc2			15		In XT, HS and LP modes when external clock is used to drive OSC1.	
D101	All I/O pins and OSC2 (in RC mode)	Сю			50	pF		
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only								

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 3: Negative current is defined as current sourced by the pin.

3: Negative current is defined as current sourced by the pin.

4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.

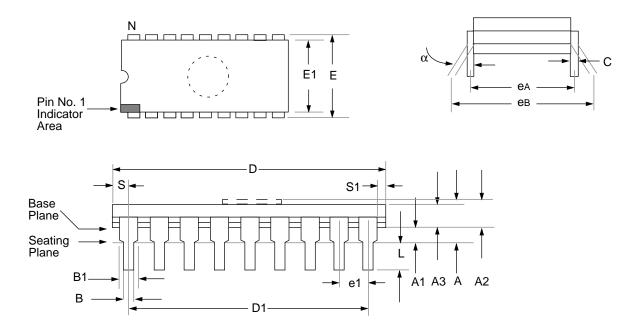
FIGURE 15-6: A/D CONVERSION TIMING

TABLE 15-7: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16 C 71	2.0			μs	Tosc based, VREF ≥ 3.0V
			PIC16LC71	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 71	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LC71	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H tim	e) (Note 1)	_	9.5	_	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μs	
				5*	_	—	μs	The minimum time is the ampli fier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2§	_	-	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve	$rt \rightarrow sample time$	1.5§	_	_	TAD	

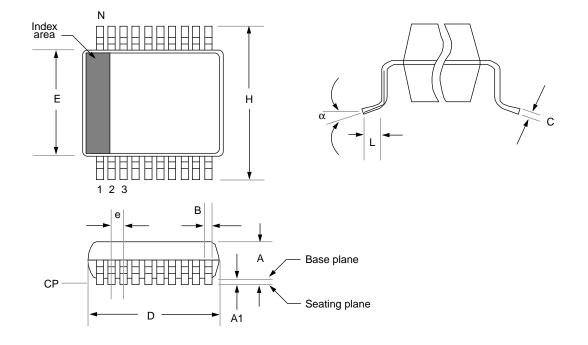
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


§ These specifications ensured by design.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 7.1 for min conditions.


17.0 PACKAGING INFORMATION

17.1 <u>18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)</u>

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Мах	Notes		
α	0°	10°		0 °	10°			
А		5.080			0.200			
A1	0.381	1.7780		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	22.352	23.622		0.880	0.930			
D1	20.320	20.320	Reference	0.800	0.800	Reference		
E	7.620	8.382		0.300	0.330			
E1	5.588	7.874		0.220	0.310			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	7.366	8.128	Typical	0.290	0.320	Typical		
eB	7.620	10.160		0.300	0.400			
L	3.175	3.810		0.125	0.150			
N	18	18		18	18			
S	0.508	1.397		0.020	0.055			
S1	0.381	1.270		0.015	0.050			

17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

	Package Group: Plastic SSOP							
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	8°		0°	8°			
А	1.730	1.990		0.068	0.078			
A1	0.050	0.210		0.002	0.008			
В	0.250	0.380		0.010	0.015			
С	0.130	0.220		0.005	0.009			
D	7.070	7.330		0.278	0.289			
E	5.200	5.380		0.205	0.212			
е	0.650	0.650	Reference	0.026	0.026	Reference		
Н	7.650	7.900		0.301	0.311			
L	0.550	0.950		0.022	0.037			
N	20	20		20	20			
CP	-	0.102		-	0.004			

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

- 2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.
- 3: This outline conforms to JEDEC MS-026.

PIC16C71X

Figure 14-6:	Typical RC Oscillator Frequency vs.
riguio i i o.	VDD126
Figure 14-7:	Typical RC Oscillator Frequency vs. VDD126
Figure 14-8:	Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode)127
Figure 14-9:	Maximum IPD vs. VDD Brown-out Detect Enabled
Figure 14-10:	(85°C to -40°C, RC Mode)
Figure 14-11:	Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 14-12:	85°C to -40°C, RC Mode)
Figure 14-13:	(RC Mode @ 22 pF, 25 C) 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) 128
Figure 14-14:	(RC Mode @ 22 pF, -40 C to 85 C) 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C)
Figure 14-15:	Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) 129
Figure 14-16:	Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C)
Figure 14-17:	Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) 130
Figure 14-18:	Typical IDD vs. Capacitance @ 500 kHz (RC Mode)131
Figure 14-19:	Transconductance(gm) of HS Oscillator vs. VDD131
Figure 14-20:	Transconductance(gm) of LP Oscillator vs. VDD131
Figure 14-21:	Transconductance(gm) of XT Oscillator vs. VDD131
Figure 14-22:	Typical XTAL Startup Time vs. VDD (LP Mode, 25°C)132
Figure 14-23:	Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)132
Figure 14-24:	Typical XTAL Startup Time vs. VDD (XT Mode, 25°C)132
Figure 14-25:	Typical IDD vs. Frequency (LP Mode, 25°C)133
Figure 14-26:	Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)
Figure 14-27:	Typical IDD vs. Frequency (XT Mode, 25°C)133
Figure 14-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)133
Figure 14-29:	Typical IDD vs. Frequency (HS Mode, 25°C)134
Figure 14-30:	Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)134
Figure 15-1:	Load Conditions140
Figure 15-2:	External Clock Timing141
Figure 15-3:	CLKOUT and I/O Timing142
Figure 15-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer
Figure 15 5	Timing
Figure 15-5:	Timer0 External Clock Timings
Figure 15-6:	A/D Conversion Timing
Figure 16-1:	Typical RC Oscillator Frequency vs.
Figure 16-2:	Temperature
Figure 16-3:	VDD147 Typical RC Oscillator Frequency vs.
	VDD

Figure 16-4:	Typical RC Oscillator Frequency vs. VDD
Figure 16-5:	Typical lpd vs. VDD Watchdog Timer Disabled 25°C148
Figure 16-6:	Typical Ipd vs. VDD Watchdog Timer Enabled 25°C 148
Figure 16-7:	Maximum Ipd vs. VDD Watchdog Disabled149
Figure 16-8:	Maximum Ipd vs. VDD Watchdog Enabled149
Figure 16-9:	Vth (Input Threshold Voltage) of I/O Pins vs. VDD149
Figure 16-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD
Figure 16-11:	Vтн (Input Threshold Voltage) of OSC1 Input (in XT, HS, and
	LP Modes) vs. VDD 150
Figure 16-12:	Typical IDD vs. Freq (Ext Clock, 25°C) 151
Figure 16-13:	Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C)151
Figure 16-14:	Maximum IDD vs. Freq with A/D Off
	(Ext Clock, -55° to +125°C) 152
Figure 16-15:	WDT Timer Time-out Period vs. VDD 152
Figure 16-16:	Transconductance (gm) of
E: 10.17	HS Oscillator vs. VDD 152
Figure 16-17:	Transconductance (gm) of LP Oscillator vs. VDD
Figure 16-18:	Transconductance (gm) of
. igure te tet	XT Oscillator vs. VDD 153
Figure 16-19:	IOH vs. VOH, VDD = 3V 153
Figure 16-20:	IOH vs. VOH, VDD = 5V 153
Figure 16-21:	IOL vs. VOL, VDD = 3V
Figure 16-22:	IOL vs. VOL, VDD = 5V 154