

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

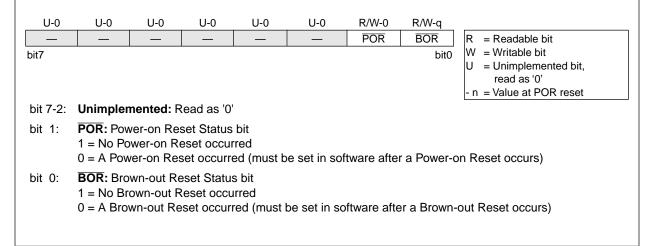
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-04i-ss

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.6 PCON REGISTER

Applicable Devices71071711715

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711

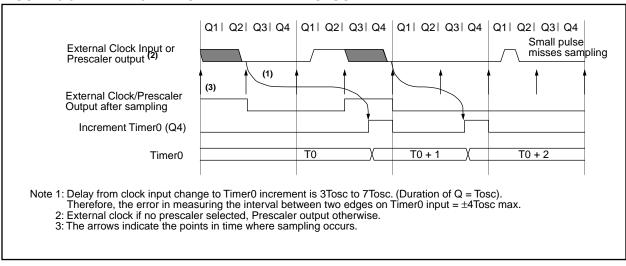
FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715

R-U MPEEN	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-q BOR ⁽¹⁾	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:	MPEEN: I Reflects th				Status bit bit, MPEE	N				
bit 6-3:	Unimplen	nented: R	ead as '0'							
bit 2:	bit 2: PER: Memory Parity Error Reset Status bit 1 = No Error occurred 0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset)									
bit 1:										
bit 0:										

6.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

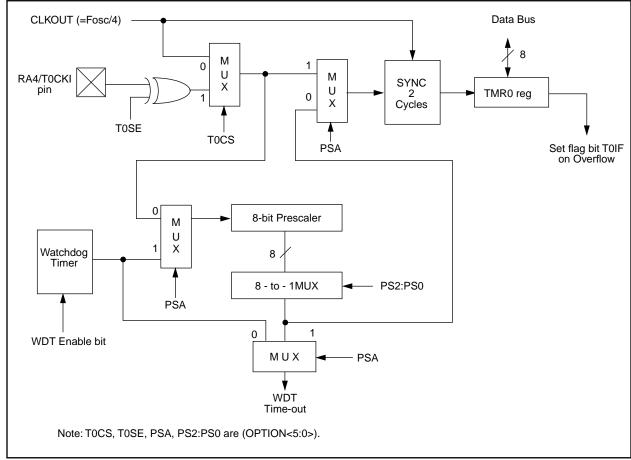
When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK


6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

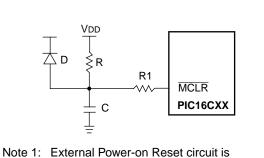
Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

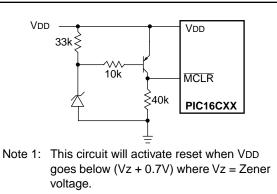

5: Brown-out reset is not implemented on the PIC16C71.

FIGURE 8-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

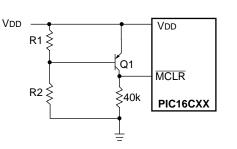

- required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 = 100\Omega$ to $1 k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

FIGURE 8-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 8-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C710/711/715 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistor.

8.5 Interrupts

Applicable Devices71071711715

The PIC16C71X family has 4 sources of interrupt.

Interrupt Sources
External interrupt RB0/INT
TMR0 overflow interrupt
PORTB change interrupts (pins RB7:RB4)
A/D Interrupt
The interrupt control register (INTCON) records indi-

vidual interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 8-19). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

~									
Note: For the PIC16C71 If an interrupt occurs while the Global Interrupt Enable (GIE) bit is being cleared, the GIE bit may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:									
	1	. An instruction clears the GIE bit while an interrupt is acknowledged.							
	2	2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.							
	3	. The Interrupt Service Routine com- pletes with the execution of the RET- FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to dis- able interrupts.							
		Perform the following to ensure that inter- upts are globally disabled:							
LOOP	BCF	INTCON, GIE ; Disable global ; interrupt bit							
		INTCON, GIE ; Global interrupt ; disabled?							
	GOTO	LOOP ; NO, try again							

:

Yes, continue

with program

flow

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>] BCF f,b	Syntax:	[<i>label</i>] BTFSC f,b			
Operands:	$0 \le f \le 127$ $0 \le b \le 7$	Operands:	$0 \le f \le 127$ $0 \le b \le 7$			
Operation:	$0 \rightarrow (f < b >)$	Operation:	skip if (f) = 0			
Status Affected:	None	Status Affected:	None			
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff			
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '1' then the next			
Words:	1		instruction is executed. If bit 'b', in register 'f', is '0' then the next			
Cycles:	1		instruction is discarded, and a NOP is			
Q Cycle Activity:	Q1 Q2 Q3 Q4		executed instead, making this a 2TCY instruction.			
	Decode Read Process Write register 'f'	Words: Cycles:	1 1(2)			
Example	BCF FLAG REG, 7	Q Cycle Activity:	Q1 Q2 Q3 Q4			
Example	Before Instruction		Decode Read Process NOP register 'f' data			
	FLAG_REG = 0xC7 After Instruction	If Skip:	(2nd Cycle)			
	$FLAG_REG = 0x47$	·	Q1 Q2 Q3 Q4			
			NOP NOP NOP NOP			
		Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •			

•	
Before Instruction	
PC = address	HERE
After Instruction	
if $FLAG < 1 > = 0$,	

	0,	
PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f						
Syntax:	[<i>label</i>] BS	SF f,b					
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f < b)$	>)					
Status Affected:	None						
Encoding:	01	01bb	bfff	ffff			
Description:	Bit 'b' in re	gister 'f' is	s set.	·			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A						

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine			
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	[<i>label</i>] CALL k			
Operands:	$0 \le f \le 127$				Operands:	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,			
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC < 10:0>,$				
Status Affected:	None	i				$(PCLATH{<}4:3{>}) \rightarrow PC{<}12:11{>}$:11>	
Encoding:	01	11bb	bfff	ffff	Status Affected:	None				
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk	
	instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2Tcy instruction.				Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the state address is The upper	ck. The s loaded [·] bits of	
Words:	1							rom PCLA instruction		
Cycles:	1(2)				Words:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2				
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4	1		Push PC to Stack			
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP	
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE		
	TRUE	•				Before Ir				
		•				After Ins		Address HE	RE	
	Before In	struction					-	ddress TH		
			address H	IERE			TOS = A	Address HE	RE+1	
	After Inst	ruction if FLAG<1>	- 0							
		-	> = 0, address F≠	ALSE						
		if FLAG<1> PC =	,							
		FU = 1	address TF	KUE						

CLRF	Clear f							
Syntax:	[<i>label</i>] C	[<i>label</i>] CLRF f						
Operands:	$0 \le f \le 12$	7						
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$							
Status Affected:	Z							
Encoding:	00	0001	lfff	ffff				
Description:	The contents of register 'f' are cleared and the Z bit is set.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write register 'f'				
Example	CLRF	FLAG	G_REG					
	Before Instruction FLAG_REG = 0x5A After Instruction							
		FLAG_RE Z	=	0x00 1				

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleare	d. Zero bit	(Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	NOP	Process data	Write to W
Example	CLRW			
_///	Before In	struction	1	
		W =	0x5A	
	After Inst			
		W = Z =	0x00 1	
		_		
CLRWDT	Clear Wa	tchdog	Timer	
Syntax:	[label]	CLRWD	Т	
Operands:	None			
Operation:	$00h \rightarrow W$			
	$0 \rightarrow WDT \\ 1 \rightarrow \overline{TO}$	r presca	ier,	
	$1 \rightarrow \overline{PD}$			
Status Affected:	TO, PD			
E a contra au				
Encoding:	00	0000	0110	0100
Encoding: Description:	00 CLRWDT in dog Timer of the WD are set.	struction It also re	resets the sets the pi	Watch- rescaler
C C	CLRWDT in dog Timer of the WD	struction It also re	resets the sets the pi	Watch- rescaler
Description: Words:	CLRWDT in dog Timer of the WD are set.	struction It also re	resets the sets the pi	Watch- rescaler
Description: Words: Cycles:	CLRWDT in dog Timer of the WD are set. 1	Istruction It also re T. Status I	resets the sets the pr bits TO and	Watch- escaler d PD
Description: Words:	CLRWDT in dog Timer of the WD are set. 1	struction It also re	resets the sets the pi	Watch- rescaler d PD Q4 Clear WDT
Description: Words: Cycles: Q Cycle Activity:	CLRWDT in dog Timer. of the WD are set. 1 1 Q1 Decode	struction It also re T. Status I Q2	esets the sets the pl pits TO and Q3 Process	Watch- escaler d PD Q4 Clear
Description: Words: Cycles:	CLRWDT in dog Timer of the WD are set. 1 1 Q1 Decode	Q2	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Description: Words: Cycles: Q Cycle Activity:	CLRWDT in dog Timer of the WD are set. 1 1 Q1 Decode CLRWDT Before In	Q2 NOP Struction WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT
Description: Words: Cycles: Q Cycle Activity:	CLRWDT in dog Timer. of the WD are set. 1 1 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou	Q3 Process data	Watch- rescaler d PD Q4 Clear WDT Counter
Description: Words: Cycles: Q Cycle Activity:	CLRWDT in dog Timer of the WD are set. 1 1 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou WDT cou WDT pres	Q3 Process data nter = scaler=	Q4 Clear WDT Counter ? 0x00 0
Description: Words: Cycles: Q Cycle Activity:	CLRWDT in dog Timer of the WD are set. 1 1 Q1 Decode CLRWDT Before In After Inst	Q2 NOP Struction WDT cou WDT cou	Q3 Process data nter =	Watch- rescaler PD Q4 Clear WDT Counter ? 0x00

GOTO	Unconditional Branch							
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 2047$							
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<4:3> \rightarrow PC<12:11>							
Status Affected:	None							
Encoding:	10	1kkk	kkkk	kkkk				
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.							
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC				
2nd Cycle	NOP	NOP	NOP	NOP				
Example	GOTO TI After Inst		Address	THERE				

INCF	Incremen	nt f		
Syntax:	[label]	INCF f	,d	
Operands:	$0 \le f \le 12^{n}$ $d \in [0,1]$	7		
Operation:	(f) + 1 \rightarrow	(dest)		
Status Affected:	Z			
Encoding:	00	1010	dfff	ffff
Description:	The conter mented. If in the W re placed bac	d' is 0 the gister. If '	e result is d' is 1 the	olaced
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to dest
Example	INCF	CNT,	1	
		struction CNT Z	= 0xFF = 0	-
	After Instr	uction	-	
		CNT Z	= 0x00 = 1)

11.2 PIC16LC710-04 (Commercial, Industrial, Extended) DC Characteristics: PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHAF			ard Ope ing tem		ire 0° -4	itions (unless otherwise stated)C \leq TA \leq +70°C (commercial)0°C \leq TA \leq +85°C (industrial)0°C \leq TA \leq +125°C (extended)	
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - -	7.5 0.9 0.9 0.9	30 5 5 10	μΑ μΑ μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710 AND PIC16C711

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean +3 σ) and (mean -3 σ) respectively where σ is standard deviation.

FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

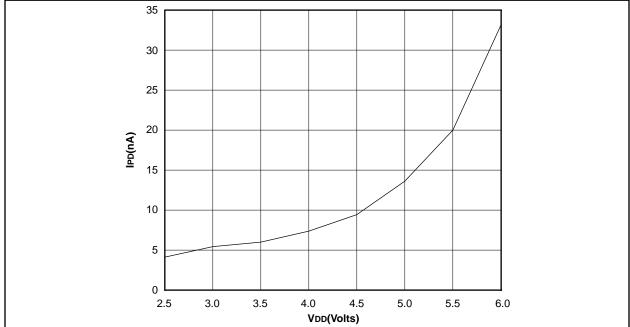
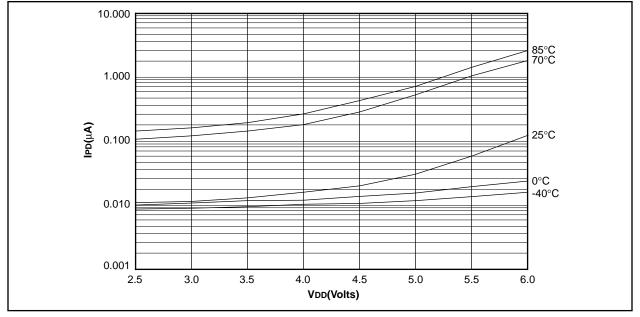



FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

Applicable Devices 710 71 711 715

13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715

Absolute Maximum Ratings †

Ambient temperature under bias	
Storage temperature	+150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	+ 0.3V)
Voltage on VDD with respect to Vss	€+7.5V
Voltage on MCLR with respect to Vss0 to	o +14V
Voltage on RA4 with respect to Vss0 to	o +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
	20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)±	20 mA
Maximum output current sunk by any I/O pin	.25 mA
	.20
Maximum current sunk by PORTA	200 mA
Maximum current sourced by PORTA	200 mA
Maximum current sunk by PORTB	200 mA
Maximum current sourced by PORTB	200 mA
Note 1: Power dissipation is calculated as follows: Rdis = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI	
+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to t	the

TNOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 710 71 711 715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHAF	RACTERISTICS			ard Ope ing tem		ire 0°	itions (unless otherwise stated) $C \leq TA \leq +70^{\circ}C$ (commercial) $0^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial)
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = $3.0V$, WDT disabled
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μΑ	BOR enabled VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	30 5	μ Α μΑ μΑ	$VDD = 3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$ $VDD = 3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D023	Brown-out Reset Current (Note 5)		-	300*	500	μA	BOR enabled VDD = 5.0V

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

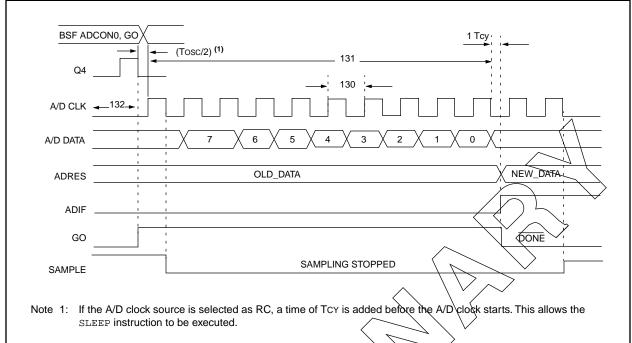
 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

13.3 I	PIC16C71 PIC16C71 PIC16LC7	5-10 5-20 15-04	(Comme (Comme (Comme	rcia rcia ercia	il, Indus il, Indus il, Indus	strial, strial, strial))	
							nless otherwise stated) TA ≤ +70°C (commercial)
		Operati	ng tempe	alur	e 0°C -40°		TA \leq +85°C (industrial)
DC CHA	RACTERISTICS				-40°		$TA \le +125^{\circ}C$ (extended)
		Operati	na voltaa	e Vd			cribed in DC spec Section 13.1
			ction 13.2				
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.		-		t			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.5V	V	
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2VDD	v	$ $ \backslash \langle \checkmark
	(in RC mode)				0.2.000		
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	/v/	Note1
	Input High Voltage						\checkmark
	I/O ports	Vін		-	$\langle \setminus$		
D040	with TTL buffer		2.0	\sim	VDD	∕ v \	$4.5 \leq VDD \leq 5.5V$
D040A			0.8Vdd	$\langle \cdot \rangle$	VDD	\mathcal{N}	For VDD > 5.5V or VDD < 4.5V
D041	with Schmitt Trigger buffer		0.8100		VBD	\sim	For entire VDD range
D042	MCLR, RA4/T0CKI RB0/INT		0.8VDD	\searrow	Vpp \	V	
D042A	OSC1 (XT, HS and LP)		0,7VQD	<u>\-</u> `	VDD	V	Note1
D043	OSC1 (in RC mode)	~	Q.9VDD			V	
D070	PORTB weak pull-up current	PURB	50	25,0	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)	\nearrow		\checkmark			
D060	I/O ports			-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI	$\langle \rangle$	· -	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1	\sim	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and L
	$ \land \land \land \land \land$	$\langle \rangle$					osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6		IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A	$(h) \rightarrow (h)$		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C


Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

FIGURE 13-7: A/D CONVERSION TIMING

TABLE 13-8: A/D CONVERSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Турт	Max	Units	Conditions
130	TAD	A/D clock period	1.6	1 1/4/	× –	μs	Vref ≥ 3.0V
			2.0		i —	μs	VREF full range
130	TAD	A/D Internal RC		$\land \lor$			ADCS1:ADCS0 = 11
		Oscillator source					(RC oscillator source)
			3.0	6.0	9.0	μs	PIC16LC715, VDD = 3.0V
		$ \land \land$	2.0	4.0	6.0	μs	PIC16C715
131	TCNV	Conversion time	ĬŇ-Ĭ	9.5Tad	—	_	
		(not including S/H	\sim				
		time). Note 1	$\langle \rangle$				
132	TACQ	Acquisition time	Note 2	20	_	μs	

* These parameters are characterized but not tested.

† Data in Type column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

Applicable Devices 710 71 711 715

FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

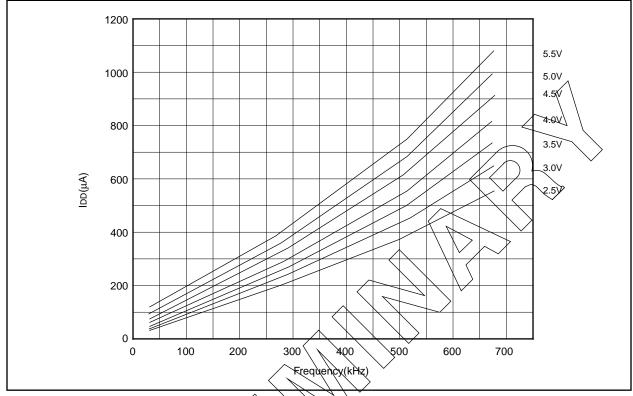
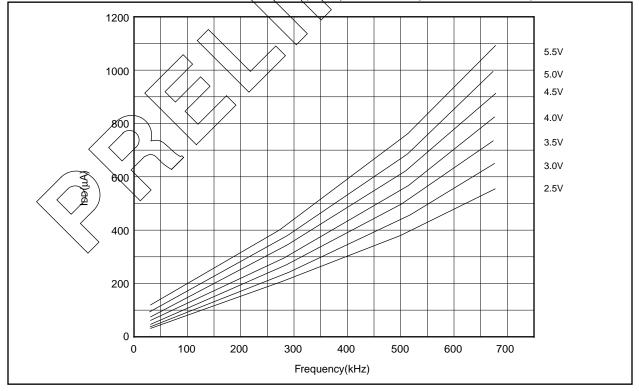
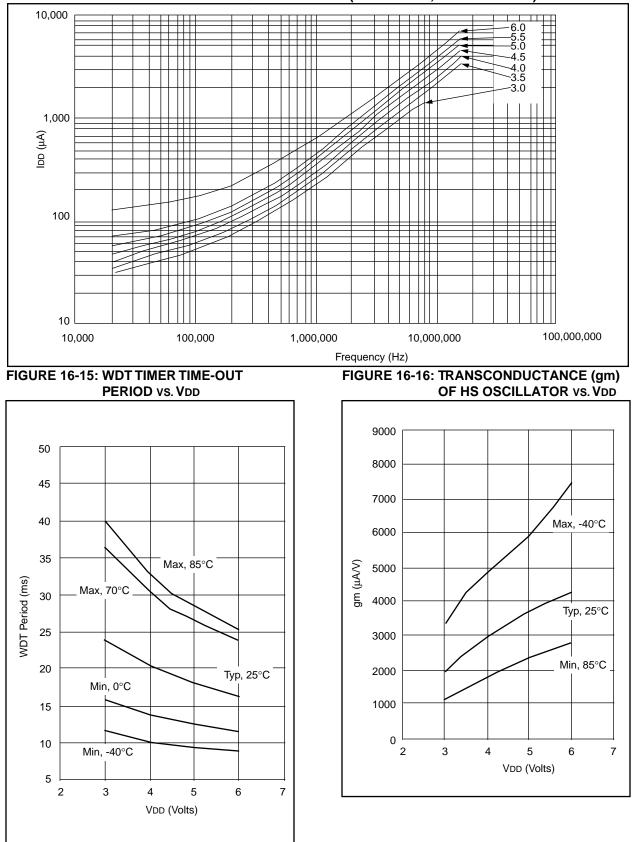




FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

FIGURE 16-14: MAXIMUM IDD vs. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)

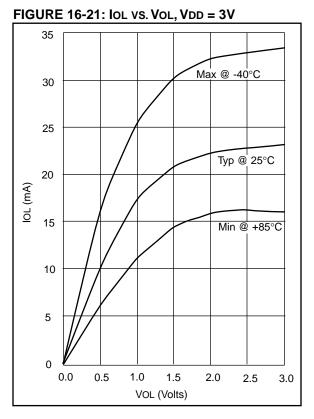
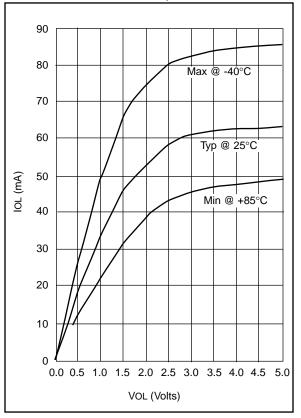



FIGURE 16-22: IOL VS. VOL, VDD = 5V

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	m: Name	
	Company	
A	Telephone: ()	FAX: ()
	blication (optional):	
Wou	uld you like a reply?YN	
Dev	vice: PIC16C71X Literatu	ire Number: DS30272A
Que	estions:	
1	What are the best features of this docum	pent?
1.	What are the best leatures of this docum	
2.	How does this document meet your hard	ware and software development needs?
	,	·
3.	Do you find the organization of this data	sheet easy to follow? If not, why?
4.	What additions to the data sheet do you	think would enhance the structure and subject?
5.	What deletions from the data sheet could	d be made without affecting the overall usefulness?
-		
6.	Is there any incorrect or misleading infor	mation (what and where)?
7		
7.	How would you improve this document?	
8	How would you improve our software, sy	stems, and silicon products?
0.	The model you improve our soluvale, sy	