

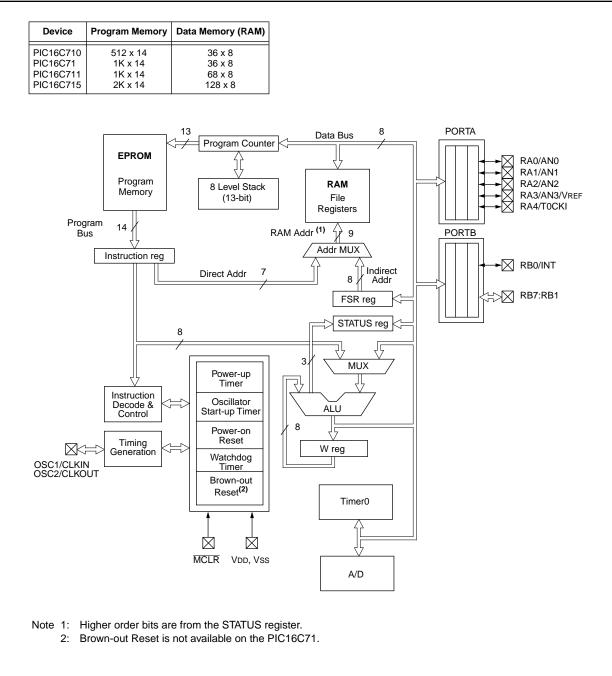
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	68 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 3-1: PIC16C71X BLOCK DIAGRAM

NOTES:

8.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 710 71 711 715

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR) (PIC16C710/711/715)
 - Parity Error Reset (PER) (PIC16C715)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71

bit13	- -	—	—	—	_	—	—	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimpler	nented	: Read	as '1'										
bit 4:	CP0: Cod 1 = Code 0 = All me	protect	ion off		ed, but	00h - 3	Fh is w	/ritable						
bit 3:	PWRTE: 1 = Power 0 = Power	-up Tin	ner ena	bled	le bit									
bit 2:	WDTE: W 1 = WDT 0 = WDT	enabled	ł	Enable	e bit									
bit 1-0:	FOSC1:F 11 = RC c 10 = HS c 01 = XT c 00 = LP o	oscillato oscillato oscillato	or r	tor Sele	ection b	vits								

8.4.5 TIME-OUT SEQUENCE

Applicable Devices 710 71 711 715

On power-up the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 8-11, Figure 8-12, and Figure 8-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 8-12). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 8-10 and Table 8-11 show the reset conditions for some special function registers, while Table 8-12 and Table 8-13 show the reset conditions for all the registers.

8.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Applicable Devices71071711715

The Power Control/Status Register, PCON has up to two bits, depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent resets to see if bit BOR cleared, indicating a BOR occurred. The BOR bit is a "Don't Care" bit and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word). Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

For the PIC16C715, bit2 is $\overline{\text{PER}}$ (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

For the PIC16C715, bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset of interrupt.

8.4.7 PARITY ERROR RESET (PER)

Applicable Devices 710 71 711 715

The PIC16C715 has on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit 2 in the PCON register is cleared (logic '0'). This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure in Program Memory. This flag can only be set (logic '1') by software.

The parity array is user selectable during programming. Bit 7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity. If left unprogrammed (read as '1'), parity is enabled.

TABLE 8-5:TIME-OUT IN VARIOUS SITUATIONS, PIC16C71

Oscillator Configuration	Powe	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	

TABLE 8-6:TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715

Oscillator Configuration	Power-up		Brown out	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	Brown-out	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	_	72 ms	_

TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711

Condition	Program Counter	STATUS Register	PCON Register PIC16C710/711
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	นนน0 0นนน	uu
Brown-out Reset (PIC16C710/711)	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 Ouuu	uuuu
WDT Reset	000h	0000 luuu	uuuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	uuu0
Parity Error Reset	000h	uuul Ouuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

PIC16C71X

GOTO	Unconditional Branch						
Syntax:	[label]	GOTO	k				
Operands:	$0 \le k \le 2047$						
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> $\rightarrow PC<12:11>$						
Status Affected:	None						
Encoding:	10	1kkk	kkkk	kkkk			
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.						
Words:	1						
Cycles:	2						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			
2nd Cycle	NOP	NOP	NOP	NOP			
Example	GOTO THERE After Instruction PC = Address THERE						

INCF	Increment f	
Syntax:	[label] INCF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$	
Operation:	(f) + 1 \rightarrow (dest)	
Status Affected:	Z	
Encoding:	00 1010 dfff	ffff
Description:	The contents of register 'f' a mented. If 'd' is 0 the result in the W register. If 'd' is 1 th placed back in register 'f'.	is placed
Words:	1	
Cycles:	1	
Q Cycle Activity:	Q1 Q2 Q3	Q4
	Decode Read register data	Write to dest
Example	INCF CNT, 1	
	Before Instruction CNT = 0 Z = 0	٢F
	After Instruction	
	$\begin{array}{rcl} CNT &=& 0;\\ Z &=& 1 \end{array}$	<00

INCFSZ	Increment f, Skip if 0							
Syntax:	[label]	[label] INCFSZ f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$						
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0				
Status Affected:	None	None						
Encoding:	00	1111	dfff	ffff				
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.							
Words:	1							
Cycles:	1(2)							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to dest				
If Skip:	(2nd Cyc	le)		•				
·	`Q1	 Q2	Q3	Q4				
	NOP	NOP	NOP	NOP				
Example	HERE INCFSZ CNT, GOTO LOOP CONTINUE •							
	Before In PC After Inst CNT if CNT PC if CNT PC	$= adc$ ruction $= CN$ $= 0,$ $= adc$ $\neq 0,$	Iress HERE T + 1 Iress CONT	TINUE				

IORLW			eral with	
Syntax:	[label]	IORLW	К	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$)	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	OR'ed wit	h the eigh	W register t bit literal ne W regist	'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	IORLW	0x35		
	Before In		1	
		W =	0x9A	
	After Inst			
		W =	0xBF	

RETLW Return with Literal in W						
Syntax:	[label]	RETLW	k			
Operands:	$0 \le k \le 2$	55				
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow F \end{array}$	ъс				
Status Affected:	None					
Encoding:	11	01xx	kkkk	kkkk		
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	Read literal 'k'	NOP	Write to W, Pop from the Stack		
2nd Cycle	NOP	NOP	NOP	NOP		
Example	CALL TABLI	;offse	tains tab t value ow has tab			
TABLE	ADDWF PC RETLW k1 RETLW k2 • •	;W = of ;Begin ; ; End o	table			
	Before In					
		W =	0x07			
	After Inst	ruction W =	value of k	8		

Syntax:	[label]	RETUR	N			
Operands:	None					
Operation:	$TOS \to F$	ъС				
Status Affected:	None					
Encoding:	00	0000	0000	1000		
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.					
Words:	1					
Cycles:	2					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
1st Cycle	Decode	NOP	NOP	Pop from the Stack		
2nd Cycle	NOP	NOP	NOP	NOP		
Example	RETURN	rrupt				
		PC =	TOS			

HCS200 HCS300 HCS301										、	、					
										7	2					7
24CXX 25CXX 93CXX							2			7		2				
PIC17C75X	Available 3Q97		7	2					7	7						
PIC17C4X	2		7	2	7	7			7	7			7			
PIC16C9XX	2		7	7	7				7	7					7	
PIC16C8X	7	7	7	7	7	7		7	7	7			7			
PIC16C7XX	7	7	7	2	7	7		7	7	7				7		
PIC16C6X	7	7	7	2	7	7		7	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			2			
PIC16C5X	7	7	7	7	7	7		7	7	7			7			
PIC14000	2		7	7	7				7	7						
PIC12C5XX	>	7	7	>	7				7	7						
	PICMASTER®/ PICMASTER-CE In-Circuit Emulator	CEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C compiler	Lo fuzzyTECH [®] .MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART [®] Lite Ultra Low-Cost Dev. Kit	PICSTART® Plus Low-Cost Universal Dev. Kit	PRO MATE [®] II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	PICDEM-2	e PICDEM-3	KEELOQ [®] Evaluation Kit

TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC16C71X

Appli	cable Devices	710 7	1 711 715	
11.1	DC Character	istics:	PIC16C PIC16C PIC16C PIC16C	710-04 (Commercial, Industrial, Extended) 711-04 (Commercial, Industrial, Extended) 710-10 (Commercial, Industrial, Extended) 711-10 (Commercial, Industrial, Extended) 710-20 (Commercial, Industrial, Extended) 711-20 (Commercial, Industrial, Extended)

DC CHARACTERISTICS				lard O ating te		ture (ditions (unless otherwise stated) $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ (extended)		
Param. No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
			3.7	4.0	4.4	V	Extended Range Only		
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)		
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V		
D015	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD	- - - -	10.5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 4.0V, WDT disabled, -40^{\circ}C to +125^{\circ}C$		
D023	Brown-out Reset Current (Note 5)	Δ Ibor	-	300*	500	μA	BOR enabled VDD = 5.0V		

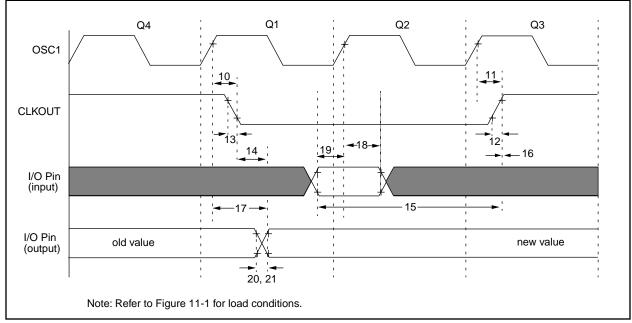
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDDMCLR = VDD; WDT enabled/disabled as specified.

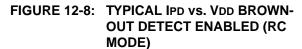
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

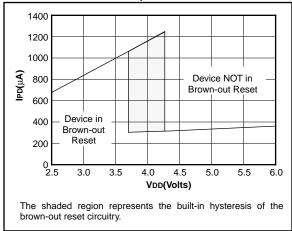
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

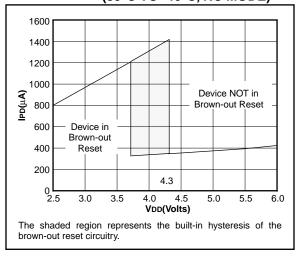
FIGURE 11-3: CLKOUT AND I/O TIMING

TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]			15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time			5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	d	_	—	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOL	0.25Tcy + 25	—	_	ns	Note 1	
16*	TckH2iol	Port in hold after CLKOUT	0	—		ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	_	_	80 - 100	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in ho	ld time)	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	TBD	—	_	ns	
20*	TioR	Port output rise time	PIC16 C 710/711		10	25	ns	
		PIC16 LC 710/711		_	—	60	ns	
21*	TioF	Port output fall time PIC16 C 710/711		—	10	25	ns	
			PIC16LC710/711	—	—	60	ns	
22††*	Tinp	INT pin high or low time		20	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	20	—	—	ns	


* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


tt These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

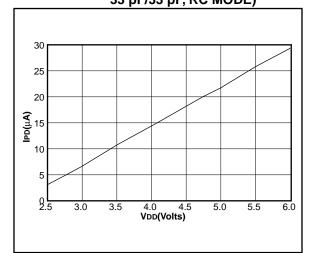


FIGURE 12-10: TYPICAL IPD vs. TIMER1 ENABLED (32 kHz, RC0/RC1 = 33 pF/33 pF, RC MODE)

Applicable Devices 710 71 711 715

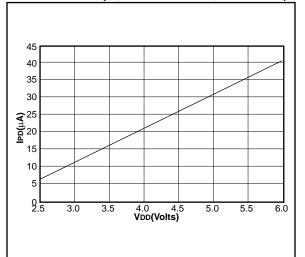


FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

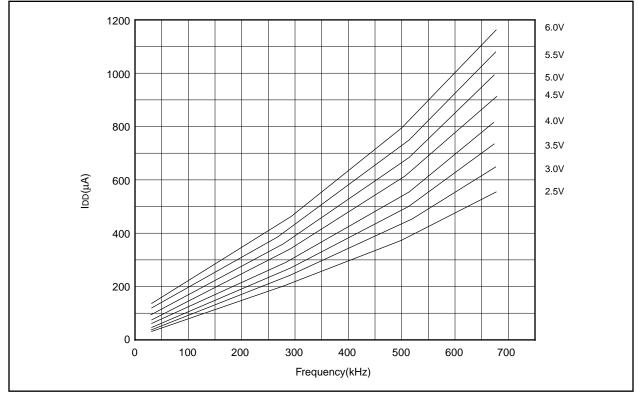
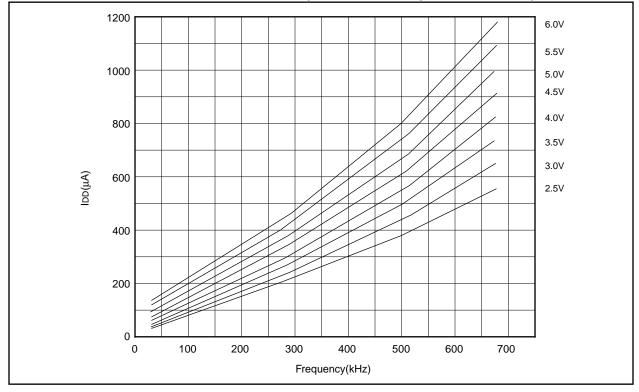
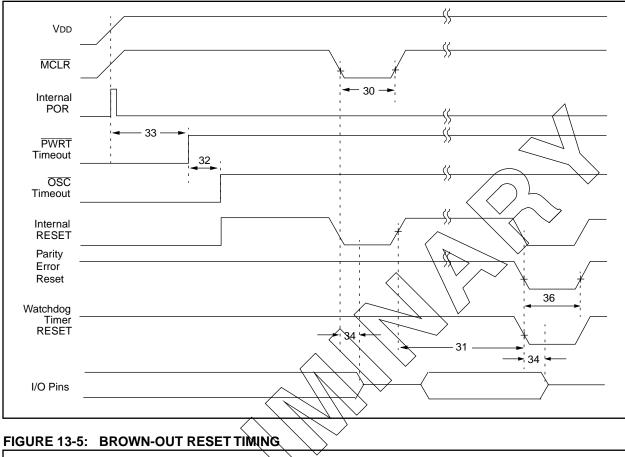



FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

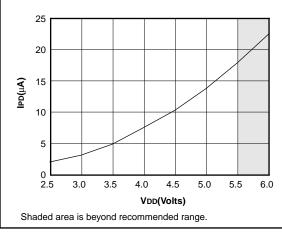

OSC		PIC16C715-04	•	PIC16C715-10		PIC16C715-20		PIC16LC715-04		PIC16C715/JW
RC	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
хт	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.	VDD: IDD: IPD: Freq:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 μA typ. at 4V 4 MHz max.	IDD: NPD:	4.5V to 5.5V 2.7 mA typ. at 5.5V 1.5 µA typ. at 4V 4.MHz max,	IDD: IPD:	2.5V to 5.5V 2.0 mA typ. at 3.0V 0.9 μA typ. at 3V 4 MHz max.	VDD: IDD: IPD: Freq:	4.0V to 5.5V 5 mA max. at 5.5V 21 μA max. at 4V 4 MHz max.
HS	VDD: IDD: IPD: Freq:	4.5V to 5.5V 13.5 mA typ. at 5.5V 1.5 μA typ. at 4.5V 4 MHz max.	VDD: IDD: IPD: Freq:	 4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max. 	· /·	4.5V to 5,5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V	Do no	nt use in HS mode	VDD: IDD: IPD: Freq:	4.5V to 5.5V 30 mA max. at 5.5V 1.5 μA typ. at 4.5V 10 MHz max.
LP	VDD: IDD: IPD: Freq:	4.0V to 5.5V 52.5 μA typ. at 32 kHz, 4.0V 0.9 μA typ. at 4.0V 200 kHz max.	Do no	t use in LP mode	Do not use in LP mode		1/ /	2.SV to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.	VDD: IDD: IPD: Freq:	2.5V to 5.5V 48 μA max. at 32 kHz, 3.0V 5.0 μA max. at 3.0V 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

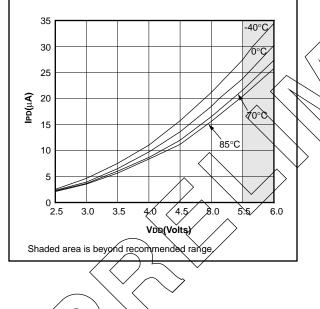
TABLE 13-1:

CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

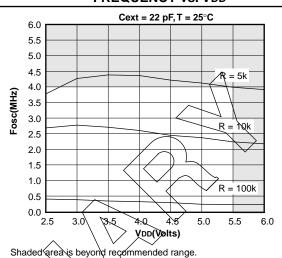
FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER TIMING

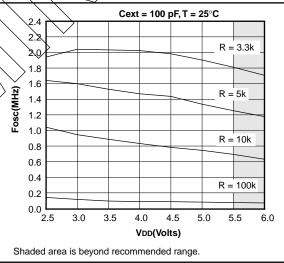

TABLE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

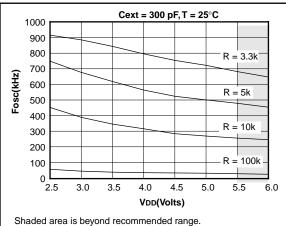
Parameter	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
No.	$ \searrow \lor$	\frown					
30	√mc⊾	MCLR Pulse Width (low)	2	—	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	< Tost	Oscillation Start-up Timer Period	-	1024Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	—	_	μs	$VDD \le BVDD$ (D005)
36	TPER	Parity Error Reset		TBD		μs	

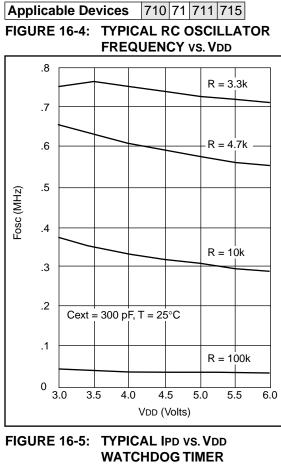

These parameters are characterized but not tested.

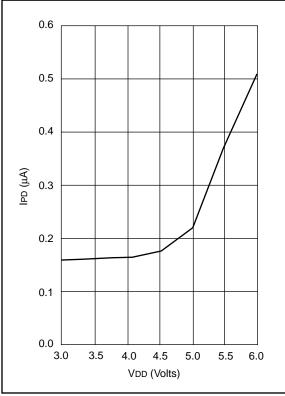
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.






FIGURE 14-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD


FIGURE 14-6: TYPICAL RC OSCILLATOR


FIGURE 14-7: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

PIC16C71X

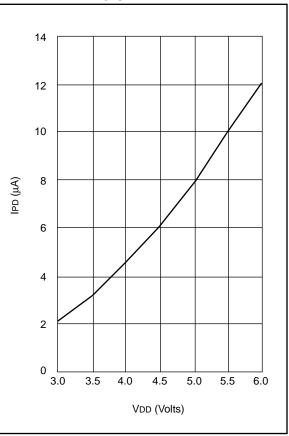


TABLE 16-1: **RC OSCILLATOR FREQUENCIES**

Cart	Devt	Average Fosc @ 5V, 25°C					
Cext	Rext						
20 pF	4.7k	4.52 MHz	±17.35%				
	10k	2.47 MHz	±10.10%				
	100k	290.86 kHz	±11.90%				
100 pF	3.3k	1.92 MHz	±9.43%				
	4.7k	1.49 MHz	±9.83%				
	10k	788.77 kHz	±10.92%				
	100k	88.11 kHz	±16.03%				
300 pF	3.3k	726.89 kHz	±10.97%				
	4.7k	573.95 kHz	±10.14%				
	10k	307.31 kHz	±10.43%				
	100k	33.82 kHz	±11.24%				

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C

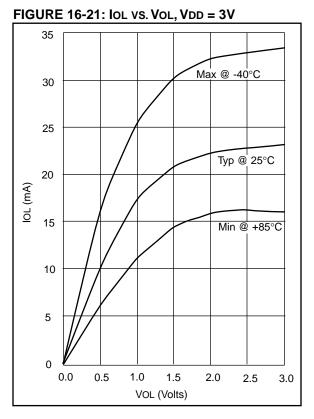
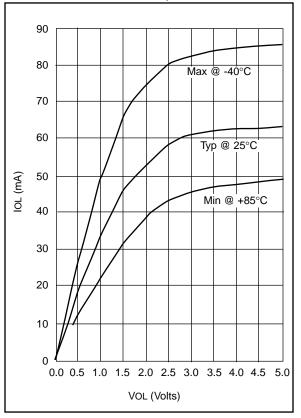



FIGURE 16-22: IOL VS. VOL, VDD = 5V

NOTES: