

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	68 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711t-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.3 I/O Programming Considerations

5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-3: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings: PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;					PORT	latch	PORT 1	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	б	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	б	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution. **Note:** To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCFSTATUS, RP0;Bank 0CLRFTMR0;Clear TMR0 & PrescalerBSFSTATUS, RP0;Bank 1CLRWDT;Clears WDTMOVLWb'xxxxlxxx';Selects new prescale valueMOVWFOPTION_REG;and assigns the prescaler to the WDTBCFSTATUS, RP0;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT		;Clear WDT and prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	module's r	egister						xxxx xxxx	uuuu uuuu
0Bh,8Bh,	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	—	—	PORTA Data Direction Register					1 1111	1 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	—	CHS1	CHS0	GO/DONE	_	ADON	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit,
								read as $0 = p = Value at POP reset$
hit 7 G	40001.0			aion Clock	Soloot hito			
bit 7-0.	ADC31.F	c/2	D Conver		Select Dits			
	01 = Fos	c/8						
	10 = Fos	c/32						
	11 = FRC	(clock der	rived from	an RC os	cillation)			
bit 5:	Unused							
bit 6-3:	CHS1:CH 000 = cha 001 = cha 010 = cha 011 = cha 100 = cha 110 = cha 111 = cha	ISO: Anaka annel 0, (F annel 1, (F annel 2, (F annel 3, (F annel 0, (F annel 1, (F annel 2, (F annel 3, (F	og Channe (A0/AN0) (A1/AN1) (A2/AN2) (A3/AN3) (A0/AN0) (A1/AN1) (A2/AN2) (A3/AN3)	el Select b	its			
bit 2:	GO/DON	E: A/D Co	nversion \$	Status bit				
	If ADON = 1 = A/D c 0 = A/D c sion is co	= 1 onversion onversion mplete)	in progree not in pro	ss (setting ogress (Th	this bit starts is bit is autom	the A/D co atically cle	nversion) ared by hard	ware when the A/D conver-
bit 1:	Unimple	mented: F	Read as '0	'				
bit 0:	ADON: A 1 = A/D c 0 = A/D c	/D On bit onverter n onverter r	nodule is a	operating shutoff and	d consumes n	o operating	g current	

FIGURE 7-3: ADCON1 REGISTER, PIC16C710/71/711 (ADDRESS 88h), PIC16C715 (ADDRESS 9Fh)

U-0	U-0	U-0 U-0	U-0	U-0	R/W-0	R/W-0	
_	_		_	_	PCFG1	PCFG0	R = Readable bit
it7		ľ	-			bit0	W = Writable bit
							U = Unimplemented
							bit, read as '0'
+ 7 0.	Unimplomen	ted. Dood oo '0	NI.				- II = value at POR rese
[7-2:	Unimplemen	ted: Read as 'U) [*]				
it 1-0:	PCFG1:PCF	GO: A/D Port Co	onfiguration C	Control bits			
t 1-0:	PCFG1:PCF	30 : A/D Port Co	onfiguration C	Control bits			
t 1-0:	PCFG1:PCF(30: A/D Port Co	RA2	Control bits RA3	VREF		
: 1-0:	PCFG1:PCFG CFG1:PCFG0 00	30 : A/D Port Co RA1 & RA0 A	RA2	Control bits RA3 A	VREF VDD		
t 1-0:	PCFG1:PCFG CFG1:PCFG0 00 01	G0 : A/D Port Co RA1 & RA0 A A	RA2 A A	RA3 A VREF	VREF VDD RA3		
t 1-0:	PCFG1:PCFG CFG1:PCFG0 00 01 10	G0 : A/D Port Co RA1 & RA0 A A A	RA2 A A D	RA3 A VREF D	VREF VDD RA3 VDD		
it 1-0:	PCFG1:PCFG CFG1:PCFG0 00 01 10 11	GO : A/D Port Co RA1 & RA0 A A A D	RA2 A A D D	A VREF D D	VREF VDD RA3 VDD VDD		
it 1-0:	PCFG1:PCFG CFG1:PCFG0 00 01 10 11 = Analog input	60 : A/D Port Co RA1 & RA0 A A A D	RA2 A A D D	RA3 A VREF D D	VREF VDD RA3 VDD VDD		
it 1-0: P A =	PCFG1:PCFG0 00 01 10 11 = Analog input = Digital I/O	G0: A/D Port Co RA1 & RA0 A A D	RA2 A A D D	RA3 A VREF D D	VREF VDD RA3 VDD VDD		

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- Set GIE bit
 - 3. Wait the required acquisition time.

2. Configure A/D interrupt (if desired):

4. Start conversion:

Clear ADIF bit

Set ADIE bit

- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 7-4: A/D BLOCK DIAGRAM

7.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 7-5. The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 7-1: A/D MINIMUM CHARGING TIME

 $\mathsf{VHOLD} = (\mathsf{VREF} - (\mathsf{VREF}/\mathsf{512})) \bullet (1 - e^{(\mathsf{-TCAP/CHOLD}(\mathsf{Ric} + \mathsf{Rss} + \mathsf{Rs}))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $TCAP = -(51.2 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/511)$

Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $V\text{DD} = 5\text{V} \rightarrow \text{Rss} = 7 \text{ k}\Omega$

Temp (application system max.) = 50°C

 $\mathsf{VHOLD}=0 @ t=0$

FIGURE 7-5: ANALOG INPUT MODEL

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- Note 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- Note 4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED AQUISITION TIME

TACQ = Amplifier Settling Time +

Holding Capacitor Charging Time + Temperature Coefficient

- TACQ = $5 \,\mu s + TCAP + [(Temp 25^{\circ}C)(0.05 \,\mu s/^{\circ}C)]$
- TCAP = -CHOLD (RIC + RSS + RS) ln(1/511)
 - -51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020) -51.2 pF (18 kΩ) ln(0.0020) -0.921 μs (-6.2364)

5.747 μs

TACQ = 5 μs + 5.747 μs + [(50°C - 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

7.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6).

7.10 <u>References</u>

A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

ADON = 0Yes ADON = 0 No Acquire Selected Channel Yes GO = 0? No Start of A/D onversion Delaye Instruction Cycle Yes A/D Clock = RC? /es SLEEP Finish Conversior Inst uction GO = 0 ADIF = 1 No No Yes Abort Conversion Yes Wake-up From Sleep inish Conversio Device in SLEEP? Wait 2 TAD GO = 0ADIF = 0 GO = 0 ADIF = 1 No No SLEEP Power-down A/D Finish Conversion Stay in Sleep Power-down A/D Wait 2 TAD GO = 0 ADIF = 1 Wait 2 TAD

FIGURE 7-7: FLOWCHART OF A/D OPERATION

FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711

CP0	CF	0 C	P0	CP0	CP0	CP0	CP0	BODEN	CP0	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
oit13														bit0	Address	2007h
bit 13- 5- bit 6:	-7 4:	CP0: 1 = C 0 = Al BODE 1 = B 0 = B	Cod ode II me E N: I OR (OR (le prote protec emory i Brown- enable disable	ection b tion off is code out Re d	protec set En	ted, bu able bi	ut 00h - 3 _t (1)	Fh is w	vritable						
bit 3:		PWR 1 = P' 0 = P'	TE: WR1 WR1	Power- Γ disab Γ enab	up Tim led led	er Ena	ble bit	(1)								
bit 2:		WDTI 1 = W 0 = W	E: W /DT /DT	/atchdo enable disable	og Time d ed	er Enab	le bit									
bit 1-C):	FOSC 11 = 10 = 01 = 2 00 =	C1:F RC o HS o XT o LP o	OSCO oscillat oscillat oscillato	: Oscilla or or or or or	ator Se	lection	bits								
Note	1:	Enabl Ensur	ling l re th	Brown∙ e Powe	out Re er-up T	set aut imer is	omatic enable	ally enated anytim	oles Po ne Brov	wer-up vn-out f	Timer (F Reset is	WRT) enabled	regardle d.	ess of the	e value of bit \overline{F}	PWRTE.

2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.

FIGURE 8-3: CONFIGURATION WORD, PIC16C715

CP1	CP0	CP1	CP0	CP1	CP0	MPEEN	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG	
bit13													bit0	Address	2007h	
bit 13- 5-	 13-8 CP1:CP0: Code Protection bits ⁽²⁾ 5-4: 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected 															
bit 7:	M 1 0	MPEEN: Memory Parity Error Enable 1 = Memory Parity Checking is enabled 0 = Memory Parity Checking is disabled														
bit 6:	B (1 0	oden: = Bor = Bor	Browr enabl disabl	n-out R ed led	Reset E	nable bi	it (1)									
bit 3:	P 1 0	WRTE: = PWR = PWR	Powe T disa T enal	r-up Ti bled bled	mer Ei	nable bit	(1)									
bit 2:	W 1 0	DTE: V = WDT = WDT	Vatchd enabl disabl	log Tin ed led	ner En	able bit										
bit 1-(D: F(11 10 01 00	DSC1:F L = RC D = HS L = XT D = LP	F OSCI oscilla oscilla oscilla oscilla	D: Osci ator ator tor tor tor	llator S	Selectior	i bits									
Note	1: Er Er 2: Al	nabling nsure th I of the	Browr he Pov CP1:0	n-out R ver-up CP0 pa	teset a Timer airs har	utomatio is enable ve to be	cally enal ed anytin given the	oles Po ne Brov e same	wer-up wn-out value	o Timer (f Reset is to enable	PWRT) enable the co	regardle d. de prote	ess of the	value of bit l eme listed.	PWRTE.	

TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711

Condition	Program Counter	STATUS Register	PCON Register PIC16C710/711
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	սսս0 Օսսս	uu
Brown-out Reset (PIC16C710/711)	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	u10x
MCLR Reset during normal operation	000h	000u uuuu	uuuu
MCLR Reset during SLEEP	000h	0001 Ouuu	uuuu
WDT Reset	000h	0000 luuu	uuuu
WDT Wake-up	PC + 1	սսս0 Օսսս	uuuu
Brown-out Reset	000h	0001 luuu	uuu0
Parity Error Reset	000h	uuul Ouuu	u0uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

9.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 9-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 9-2 lists the instructions recognized by the MPASM assembler.

Figure 9-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

PIC16C71X

BCF	Bit Clear	r f			BTFSC	Bit Test,	Skip if Cl	ear			
Syntax:	[<i>label</i>] B0	CF f,b			Syntax:	[<i>label</i>] B1	FSC f,b				
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	27			Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f < b)$	>)			Operation:	skip if $(f < b >) = 0$					
Status Affected:	None				Status Affected:	None					
Encoding:	01	00bb	bfff	ffff	Encoding:	01	10bb	bfff	ffff		
Description:	Bit 'b' in re	egister 'f' is	s cleared.		Description:	lf bit 'b' in	register 'f' is	s '1' then th	e next		
Words:	1					instruction	is execute register 'f'	d. is '0' then t	he next		
Cycles:	1					instruction	is discarde	ed, and a N	OP is		
Q Cycle Activity:	Q1	Q2	Q3	Q4		executed instead, making this a 2Tcy instruction.					
	Decode	Read register 'f'	Process data	Write register 'f'	Words: Cycles:	1 1(2)					
Example	BCF	FLAG_	REG, 7		Q Cycle Activity:	Q1	Q2	Q3	Q4		
·	Before In	struction		,		Decode	Read register 'f'	Process data	NOP		
	After Inst	ruction	=G = 0xC7		If Skip:	(2nd Cycle)					
		FLAG_RE	EG = 0x47			Q1	Q2	Q3	Q4		
						NOP	NOP	NOP	NOP		
					Example	HERE FALSE TRUE	BTFSC GOTO •	FLAG,1 PROCESS_	_CODE		

-							
Before Instruction							
PC = address	HERE						
After Instruction							
if $FLAG < 1 > = 0$,							

PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f									
Syntax:	[<i>label</i>] BSF f,b									
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$									
Operation:	$1 \rightarrow (f < b >)$									
Status Affected:	None									
Encoding:	01 01bb bfff ffff									
Description:	Bit 'b' in register 'f' is set.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write register 'f'						
Example	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction									
				1 1						

NOP	No Operation								
Syntax:	[label]	NOP							
Operands:	None								
Operation:	No operation								
Status Affected:	None								
Encoding:	00	0000	0xx0	0000					
Description:	No operati	ion.							
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	NOP	NOP	NOP					
Example	NOP								

RETFIE	Return from Interrupt									
Syntax:	[label]	RETFIE								
Operands:	None	None								
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	$\begin{array}{l} \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \end{array}$								
Status Affected:	None									
Encoding:	00	0000	0000	1001						
Description.	and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.									
Words:	1									
Cycles:	2									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
1st Cycle	Decode	NOP	Set the GIE bit	Pop from the Stack						
2nd Cycle	NOP	NOP	NOP	NOP						
Example	RETFIE									

Example

After Interrupt PC = TOS GIE = 1

OPTION	Load Op	tion Reg	gister				
Syntax:	[label]	OPTION	٧				
Operands:	None						
Operation:	$(W) \rightarrow O$	PTION					
Status Affected:	None						
Encoding:	00	0000	0110	0010			
Description: Words: Cycles: Example	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. 1						
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

PIC16C71X

XORLW	Exclusiv	Exclusive OR Literal with W									
Syntax:	[label]	XORL	V k								
Operands:	$0 \le k \le 2$	$0 \le k \le 255$									
Operation:	(W) .XO	$R.k \rightarrow (N)$	N)								
Status Affected:	Z	Z									
Encoding:	11	1010	kkkk	kkkk							
Description:	The conte XOR'ed v The resulter.	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.									
Words:	1	1									
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read literal 'k'	Read Process iteral 'k' data								
Example:	XORLW	0xAF									
	Before II	nstructio	n								
		W =	0xB5								
	After Ins	truction									
		W =	0x1A								

XORWF	Exclusive OR W with f								
Syntax:	[<i>label</i>]	XORWF	f,d						
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]								
Operation:	(W) .XOF	$R.\left(f\right)\to($	dest)						
Status Affected:	Z								
Encoding:	00	0110	dfff	ffff					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to dest					
Example	XORWF	REG	1						
	Before In	struction	1						
	$\begin{array}{rcl} REG &=& 0xAF \\ W &=& 0xB5 \end{array}$								
	After Inst	ruction							
	REG = 0x1A W = 0xB5								

11.2 **DC Characteristics:** PIC16LC710-04 (Commercial, Industrial, Extended) PIC16LC711-04 (Commercial, Industrial, Extended)

DC CHAR	ACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial) $40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage Commercial/Industrial Extended	Vdd Vdd	2.5 3.0	-	6.0 6.0	V V	LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μA	BOR enabled VDD = 5.0V		
D020 D021 D021A D021B D023	Power-down Current (Note 3) Brown-out Reset	IPD ΔIBOR	- - - -	7.5 0.9 0.9 0.9 300*	30 5 5 10 500	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, -40° C to $+85^{\circ}$ C VDD = 3.0V, WDT disabled, 0° C to $+70^{\circ}$ C VDD = 3.0V, WDT disabled, -40° C to $+85^{\circ}$ C VDD = 3.0V, WDT disabled, -40° C to $+125^{\circ}$ C BOR enabled VDD = 5.0V		
	Current (Note 5)								

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only † and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

		Standa Operati	ind Operation	t ing ratur	Conditio	ons (un ≤ T	less otherwise stated) A ≤ +70°C (commercial)				
DC CHAI	RACTERISTICS				-40°C	; ≤ l	$A \le +85^{\circ}C$ (industrial)				
		Oporati	ing voltage		-40 (2 rango a	ו≥ ג Nocoba	$A \leq +125$ C (extended)				
		Section 11.2									
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions				
	Output Low Voltage										
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С				
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C				
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С				
D092A			Vdd - 0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C				
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin				
	Capacitive Loading Specs on Output Pins										
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.				
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices71071711715

13.2 DC Characteristics: PIC16LC715-04 (Commercial, Industrial)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ (commercial) $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ (industrial)								
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions	
D001	Supply Voltage	Vdd	2.5	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Rower-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled	
D010	Supply Current (Note 2)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	βıΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-	300*	500	μÀ	BOR enabled VDD = 5.0V	
D020 D021 D021A	Power-down Current (Note 3)	IPD		7.5 0.9 0.9	35 5	μ Α μΑ μΑ	$VDD = 3.0V, WDT enabled, -40^{\circ}C to +85^{\circ}C$ $VDD = 3.0V, WDT disabled, 0^{\circ}C to +70^{\circ}C$ $VDD = 3.0V, WDT disabled, -40^{\circ}C to +85^{\circ}C$	
D023	Brown-out Reset Current (Note 5)		- `	300*	500	μA	BOR enabled VDD = 5.0V	

These parameters are characterized but pot tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, escillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

ØSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDR; WDT$ enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices71071711715

		Standa	rd Opora	tina	Conditi	one lu	nloss othorwise stated)
		Oporati	na tomno	ning			$T_{\rm A} < 170^{\circ}C$ (commercial)
		Operati	ng tempe	latur	e UC	<u> </u>	$TA \leq +70 \text{ C}$ (commercial)
DC CHAR	RACTERISTICS				-40		$TA \leq +85 C$ (industrial)
		. .			-40	C _≤	$IA \leq +125 C$ (extended)
		Operati	ng voltage	e VDI	D range	as des	cribed in DC spec Section 13.1
		and Se	ction 13.2	•			
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output High Voltage						
D090	I/O ports (Note 3)	Voн	VDD - 0.7	-	-	V	IOH = -3.0 mA. VDØ =\4.5V.
			_				-40°C to +85°C
			Vpp - 0 7		_		$10 = -25 \text{ m/s} \sqrt{108} + 15 \text{ V}$
DUSUA			0.7			V V	-10° C to $\pm 125^{\circ}$ C
D 000			V				
D092	OSC2/CLKOUT (RC osc coniig)		0.7	-	-	V	10H = -1.3 IIIA, VDD = 4.5V,
							-40°C to +85°C
D092A			VDD - 0.7] -	-		$IOP_{=} - 1.0 \text{ mA}, VDD_{=} 4.5V,$
							-40°C to +(25°C
	Capacitive Loading Specs on					\frown	
	Output Pins					/ r	
D100	OSC2 pin	Cosc ₂	-	-	15		IPXT, HS and LP modes when
					\wedge	' \	external clock is used to drive
					$\langle \rangle$	$ \setminus $	0801
D101	All I/O pips and OSC2 (in RC mode)	Cio			-50-		
			· · ·	Ķ	-30-		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin:

FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

15.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

Т					
F	Frequency	т	Time		
Lower	case letters (pp) and their meanings:	•			
рр					
сс	CCP1	osc	OSC1		
ck	CLKOUT	rd	RD		
cs	CS	rw	RD or WR		
di	SDI	sc	SCK		
do	SDO	ss	SS		
dt	Data in	tO	TOCKI		
io	I/O port	t1	T1CKI		
mc	MCLR	wr	WR		
Uppero	case letters and their meanings:				
S					
F	Fall	P	Period		
н	High	R	Rise		
	Invalid (Hi-impedance)	V	Valid		
L	Low	Z	Hi-impedance		
FIGURE 15-1: LOAD CONDITIONS					

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	200	_	_	ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time-out Period	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
		(No Prescaler)					
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O High Impedance from MCLR	—	_	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent					
RE:	: Reader Response						
Fror	m: Name						
	Company						
	Address						
	City / State / ZIP / Country						
Telephone: ()							
Application (optional):							
Wou	uld you like a reply? Y N						
Device: PIC16C71X Literature Number: DS30272A							
Que	estions:						
1	What are the best features of this docum	ent?					
1.		GIU:					
2.	How does this document meet your hard	ware and software development needs?					
	,	·					
3.	Do you find the organization of this data sheet easy to follow? If not, why?						
4.	What additions to the data sheet do you think would enhance the structure and subject?						
5.	What deletions from the data sheet could	be made without affecting the overall usefulness?					
-							
6.	Is there any incorrect or misleading inform	mation (what and where)?					
7	How would you improve this decument?						
7.	now would you improve this document:						
8.	How would you improve our software, sy	stems, and silicon products?					