

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	<u>.</u>
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	13
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	68 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c711t-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C71X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C71X family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**71. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C71X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution. **Note:** To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

BCFSTATUS, RP0;Bank 0CLRFTMR0;Clear TMR0 & PrescalerBSFSTATUS, RP0;Bank 1CLRWDT;Clears WDTMOVLWb'xxxxlxxx';Selects new prescale valueMOVWFOPTION_REG;and assigns the prescaler to the WDTBCFSTATUS, RP0;Bank 0

To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT		;Clear WDT and prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4			Value on: POR, BOR	Value on all other resets		
01h	TMR0	Timer0	module's r	egister	gister				xxxx xxxx	uuuu uuuu	
0Bh,8Bh,	INTCON	GIE	ADIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	—	_	PORTA Data Direction Register			1 1111	1 1111		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

7.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

7.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

7.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

7.8 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

Note:	Care must be taken when using the RA0
	pin in A/D conversions due to its proximity
	to the OSC1 pin.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

Register	Power-on Reset, Brown-out Reset ⁽⁵⁾	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	XXXX XXXX	นนนน นนนน	นนนน นนนน
INDF	N/A	N/A	N/A
TMR0	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000g quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	นนนน นนนน
PORTA	x 0000	u 0000	u uuuu
PORTB	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
ADRES	XXXX XXXX	นนนน นนนน	นนนน นนนน
ADCON0	00-0 0000	00-0 0000	uu-u uuuu
OPTION	1111 1111	1111 1111	นนนน นนนน
TRISA	1 1111	1 1111	u uuuu
TRISB	1111 1111	1111 1111	นนนน นนนน
PCON ⁽⁴⁾	0u	uu	
ADCON1	00	00	

TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 8-10 for reset value for specific condition.

4: The PCON register is not implemented on the PIC16C71.

5: Brown-out reset is not implemented on the PIC16C71.

8.6 <u>Context Saving During Interrupts</u>

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 8-1 stores and restores the STATUS and W registers. The user register, STATUS_TEMP, must be defined in bank 0.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.

EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W
SWAPP	•	L
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

FIGURE 8-22: WAKE-UP FROM SLEEP THROUGH INTERRUP
--

CLKOUT(4)	////	Tost(2)	//	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>		/
· .	1	1 1			/ IN	/
INTE flag		1 1	1	1 I 1 I	1 1	
(INTCON<1>)	 		1 	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	 	Processor in	1 1 1			
STRUCTION FLOW	1 1 1	SLEEP	 	1 1 1 1 1 1	1	
PC X PC	PC+1	PC+2	V PC+2	↓ ↓ PC + 2 ↓	(<u>0004h</u>)	0005h
Instruction $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Inst(PC	- 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Δ. CLKOUT is not available in these osc modes, but shown here for timing reference.

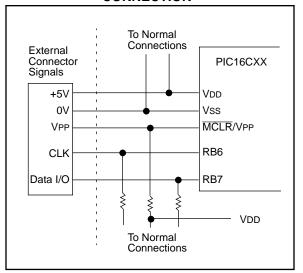
8.9 **Program Verification/Code Protection**

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

8.10 **ID** Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


8.11 In-Circuit Serial Programming

PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

BCF	Bit Clear f	BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BCF f,b	Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$	Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow (f < b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '1' then the next
Words:	1		instruction is executed. If bit 'b', in register 'f', is '0' then the next
Cycles:	1		instruction is discarded, and a NOP is
Q Cycle Activity:	Q1 Q2 Q3 Q4		executed instead, making this a 2TCY instruction.
	Decode Read Process Write register 'f'	Words: Cycles:	1 1(2)
Example	BCF FLAG REG, 7	Q Cycle Activity:	Q1 Q2 Q3 Q4
Example	Before Instruction		Decode Read Process NOP register 'f' data
	FLAG_REG = 0xC7 After Instruction	If Skip:	(2nd Cycle)
	$FLAG_REG = 0x47$	·	Q1 Q2 Q3 Q4
			NOP NOP NOP NOP
		Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •

•							
Before Instruction							
PC = address HERE							
After Instruction							
if $FLAG < 1 > = 0$,							

	0,	
PC =	address	TRUE
if FLAG<	:1>=1,	
PC =	address	FALSE

BSF	Bit Set f					
Syntax:	[<i>label</i>] BSF f,b					
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$1 \rightarrow (f < b >)$					
Status Affected:	None					
Encoding:	01	01bb	bfff	ffff		
Description:	Bit 'b' in register 'f' is set.					
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write register 'f'		
Example	BSF FLAG_REG, 7 Before Instruction FLAG_REG = 0x0A After Instruction FLAG REG = 0x8A					

BTFSS	Bit Test f	f, Skip if S	Set		CALL	Call Sub	oroutine		
Syntax:	[<i>label</i>] B1	FSS f,b			Syntax:	[label]	[<i>label</i>] CALL k		
Operands:	$0 \le f \le 12$				Operands:	$0 \le k \le 2$	047		
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS,		
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC <$		50.40	
Status Affected:	None	i				,	1<4:3>) -	\rightarrow PC<12	:11>
Encoding:	01	11bb	bfff	ffff	Status Affected:	None			
Description:		register 'f' is		ne next	Encoding:	10	0kkk	kkkk	kkkk
	If bit 'b' is discarded	is execute 1', then the and a NOF aking this a	next instru is execute	ed	Description:	(PC+1) is eleven bit into PC bi	pushed or immediate ts <10:0>.	st, return a nto the state address is The upper	ck. The s loaded [·] bits of
Words:	1							rom PCLA instruction	
Cycles:	1(2)				Words:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Cycles:	2			
	Decode	Read register 'f'	Process data	NOP	Q Cycle Activity:	Q1	Q2	Q3	Q4
If Skip:	(2nd Cyc	:le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC
	Q1	Q2	Q3	Q4	1		Push PC to Stack		
	NOP	NOP	NOP	NOP	2nd Cycle	NOP	NOP	NOP	NOP
Example	HERE FALSE		FLAG,1 PROCESS_	_CODE	Example	HERE	CALL	THERE	
	TRUE	•				Before Ir			
		•				After Ins		Address HE	RE
	Before In	struction					-	ddress TH	
			address H	IERE			TOS = A	Address HE	RE+1
	After Inst	ruction if FLAG<1>	- 0						
		-	> = 0, address F≠	ALSE					
		if FLAG<1> PC =	,						
		FU = 1	address TF	KUE					

INCFSZ	Increme	nt f, Skip	o if O					
Syntax:	[label]	INCFSZ	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(f) + 1 \rightarrow	(dest), s	kip if resu	ult = 0				
Status Affected:	None	None						
Encoding:	00	1111	dfff	ffff				
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2Tcy instruction.							
Words:	1							
Cycles:	1(2)							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write to dest				
If Skip:	(2nd Cyc	le)		•				
	`Q1	 Q2	Q3	Q4				
	NOP	NOP	NOP	NOP				
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE •							
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if $CNT= 0$, PC = address CONTINUE if $CNT \neq 0$, PC = address HERE + 1							

IORLW			eral with	
Syntax:	[label]	IORLW	К	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .OR.	$k \rightarrow (W)$)	
Status Affected:	Z			
Encoding:	11	1000	kkkk	kkkk
Description:	OR'ed wit	h the eigh	W register t bit literal ne W regist	'k'. The
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	IORLW	0x35		
	Before In		1	
		W =	0x9A	
	After Inst			
		W =	0xBF	

SLEEP

[label]	SLEEF)				
None						
$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$						
TO, PD						
00	0000	0110	0011			
cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped.						
1						
1						
Q1	Q2	Q3	Q4			
Decode	NOP	NOP	Go to Sleep			
SLEEP						
	None $00h \rightarrow W$ $0 \rightarrow WD$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD TO, PD 00 The power cleared. T set. Watch caler are The proce mode with See Section 1 1 Q1 Decode	None $00h \rightarrow WDT,$ $0 \rightarrow WDT \text{ prescal}$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 The power-down st cleared. Time-out s set. Watchdog Time caler are cleared. The processor is pr mode with the oscill See Section 8.8 for 1 1 Q1 Q2 Decode NOP	None $00h \rightarrow WDT,$ $0 \rightarrow WDT prescaler,$ $1 \rightarrow TO,$ $0 \rightarrow PD$ TO, PD 00 0000 0110 The power-down status bit, F cleared. Time-out status bit, Set. Watchdog Timer and its caler are cleared. The processor is put into SLI mode with the oscillator stop See Section 8.8 for more det 1 1 Q1 Q2 Q3 Decode NOP NOP			

SUBLW	Subtract	W from	Literal	
Syntax:	[label]	SUBL	N k	
Operands:	$0 \le k \le 25$	55		
Operation:	k - (W) \rightarrow	• (W)		
Status Affected:	C, DC, Z			
Encoding:	11	110x	kkkk kkkł	
Description:	ment meth	od) from	ubtracted (2's complet the eight bit literal 'k I in the W register.	
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3 Q4	
	Decode	Read literal 'k	Process Write to data	
Example 1:	SUBLW	0x02		
	Before Instruction			
		W = C = Z =	1 ? ?	
	After Inst	ruction		
		W = C = Z =	1 1; result is positive 0	
Example 2:	Before In:	structior	n	
		W = C = Z =	2 ? ?	
	After Inst	ruction		
		W = C = Z =	0 1; result is zero 1	
Example 3:	Before In	structior	ı	
Example 0.		W =	3	
Example 0.				
Example 0.		C = Z =	? ?	
	After Inst	Z =		
	After Inst	Z =		
	After Inst	Z = ruction	?	

10.0 DEVELOPMENT SUPPORT

10.1 <u>Development Tools</u>

The PICmicro[™] microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)

10.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

10.3 ICEPIC: Low-Cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

10.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

10.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

		Standa	rd Operat	ting	Conditio	ons (un	less otherwise stated)
		Operati	ng temper	atur		, ≤ T	$A \leq +70^{\circ}C$ (commercial)
			•		-40°0		A ≤ +85°C (industrial)
DC CHAP	RACTERISTICS				-40°0	C ≤T	$A \leq +125^{\circ}C$ (extended)
		Operati Section		e Vde	range a	s descr	ibed in DC spec Section 11.1 and
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.		- C.J		t	max	0	
	Output Low Voltage			-			
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	Vdd - 0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			Vdd - 0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		Vdd - 0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			Vdd - 0.7	-	-	V	ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C
D130*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

11.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

2. TppS

<u></u>				
Т				
F	Frequency	Т	Time	
Lowerc	ase letters (pp) and their meanings:			
рр				
сс	CCP1	osc	OSC1	
ck	CLKOUT	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upperc	case letters and their meanings:			
S				
F	Fall	P	Period	
н	High	R	Rise	
I	Invalid (Hi-impedance)	V	Valid	
L	Low	Z	Hi-impedance	

FIGURE 11-1: LOAD CONDITIONS

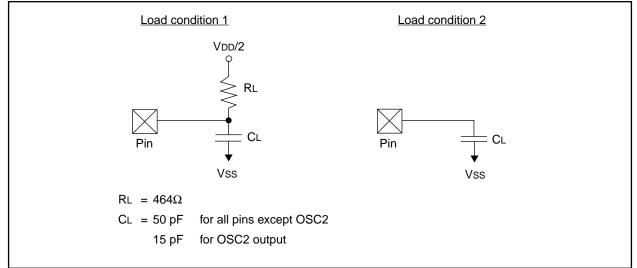


FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

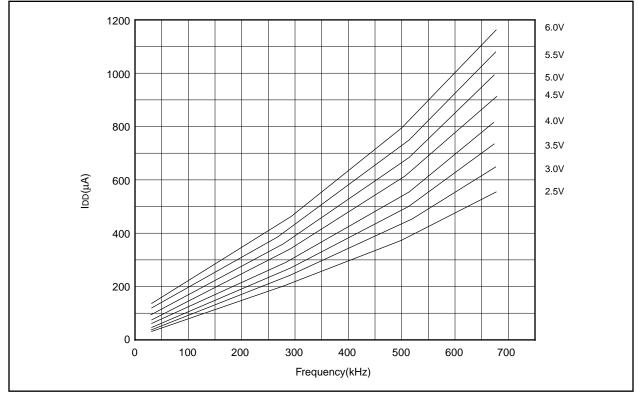
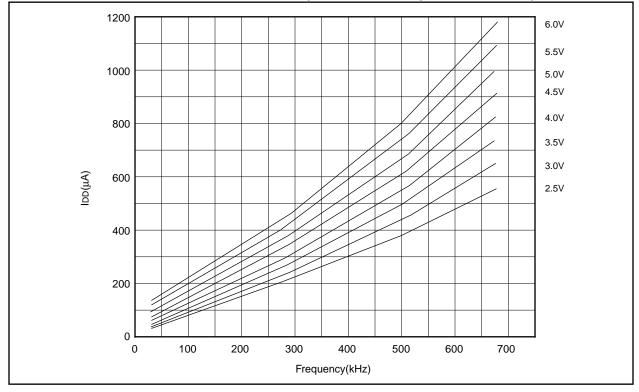



FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

13.1 DC Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (

DC CHARACTERISTICS				lard Op ating ter		ture (ditions (unless otherwise stated) $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial) $40^{\circ}C \leq TA \leq +85^{\circ}C$ (industrial) $40^{\circ}C \leq TA \leq +125^{\circ}C$ (extended)
Param. No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2)	IDD	-	2.7	5	mA .	XT, RC osc configuration (PIC16C715-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS øsc configuration (PIC16C715-20) Fosc = 20 MHz, VDD = 5.5V
D015	Brown-out Reset Current (Note 5)	Δ IBOR	-<	300*	500	ha `	BOR enabled VDD = 5.0V
D020 D021 D021A D021B	Power-down Current (Note 3)	IPD <	-	10,5 1.5 1.5 1.5	42 21 24 30	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled, } -40^{\circ}C \text{ to } +125^{\circ}C$
D023	Brown-out Reset Current (Note 5)	ALBOR		>300*	500	μA	BOR enabled VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 51, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Vod can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

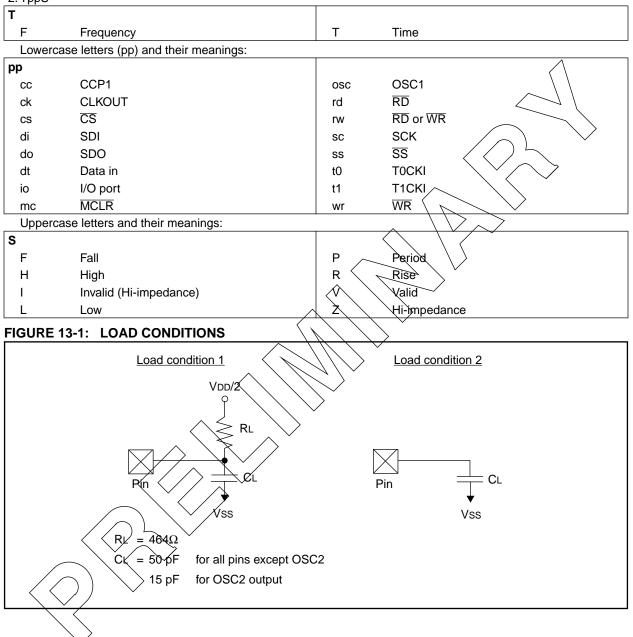
(The)test conditions for all IDD measurements in active operation mode are:

OSCT = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 \overline{MCLR} = VDD; WDT enabled/disabled as specified.

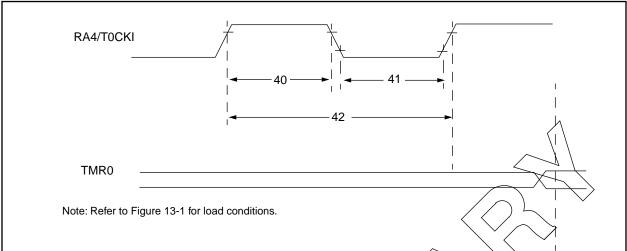
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.


5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 710 71 711 715

13.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created following one of the following formats:

- 1. TppS2ppS
- 2. TppS

Applicable Devices 710 71 711 715

TABLE 13-5: TIMER0 CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Турт	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY+20*		_	ns	
			With Prescaler	10*	1 –	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20*	-	_	ns	
			With Prescaler	10*	-	_	ns	
42	Tt0P	T0CKI Period		Greater of: 20µs or <u>Tcy + 40</u> * N		_		N = prescale value (1, 2, 4,, 256)
48	Tcke2tmrl	Delay from external clock edge t	d timer increment	2Tosc	-	7Tosc	—	

- * These parameters are characterized but not tested. \checkmark
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 710 71 711 715

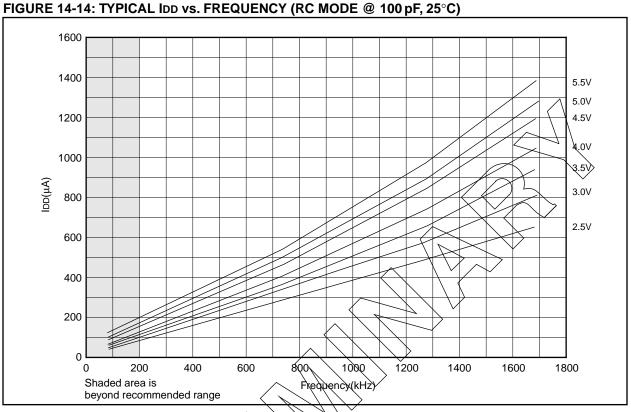
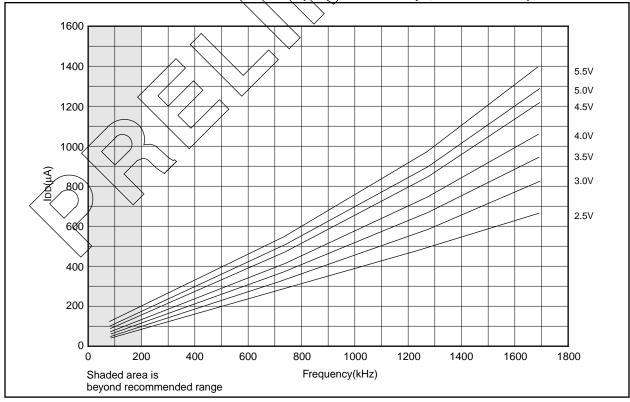



FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)

NOTES:

I

I/O Ports	
PORTA	
PORTB	
Section	
I/O Programming Considerations	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
In-Circuit Serial Programming	47, 67
INDF Register	
Indirect Addressing	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Format	69
Instruction Set	
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL CLRF	
CLRW	
CLRWDT	
COMF	
DECF	
DECFSZ	
GOTO	
INCF	
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
NOP	79
OPTION	79
RETFIE	
RETLW	80
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	
TRIS	
XORLW	
XORWF	
Section	
Summary Table INT Interrupt	
INTCON Register	
INTE bit	
INTEDG bit	
Internal Sampling Switch (Rss) Impedence	
Interrupts	
A/D	
External	
PORTB Change	
PortB Change	
RB7:RB4 Port Change	
Section	
TMR0	

TMR0 Overflow	61
INTF bit	19
IRP bit	17
К	
KeeLoq [®] Evaluation and Programming Tools	87
L	
Loading of PC	23
LP	
Μ	
MCLR	52, 56
Memory	
Data Memory	12
Program Memory	11
Register File Maps	
PIC16C71	12
PIC16C710	12
PIC16C711	13
PIC16C715	13
MP-DriveWay [™] - Application Code Generator	87
MPEEN bit	22, 48
MPLAB™ C	87
MPLAB [™] Integrated Development Environment	
Software	86

0

OPCODE	69
OPTION Register	
Orthogonal	7
OSC selection	47
Oscillator	
HS	49, 54
LP	49, 54
RC	49
ХТ	49, 54
Oscillator Configurations	49
Oscillator Start-up Timer (OST)	53

Ρ

Packaging	
18-Lead CERDIP w/Window	155
18-Lead PDIP	156
18-Lead SOIC	157
20-Lead SSOP	158
Paging, Program Memory	23
PCL Register 14, 15,	16, 23
PCLATH	57, 58
PCLATH Register 14, 15,	16, 23
PCON Register	22, 54
PD bit	52, 55
PER bit	
PIC16C71	147
AC Characteristics	147
PICDEM-1 Low-Cost PIC16/17 Demo Board	86
PICDEM-2 Low-Cost PIC16CXX Demo Board	86
PICDEM-3 Low-Cost PIC16CXXX Demo Board	
PICMASTER [®] In-Circuit Emulator	85
PICSTART [®] Plus Entry Level Development System	85
PIE1 Register	20
Pin Functions	
MCLR/VPP	9
OSC1/CLKIN	9
OSC2/CLKOUT	
RA0/AN0	9
RA1/AN1	9